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Abstract. In this paper, we investigate processes of iterative information update
due to Benthem (International Game Theory Review, vol.9, pp.13-45, 2007), who
characterized existent game-theoretic solution concepts by such processes in the
framework of Plaza’s public announcement logic. We refine this approach and clarify
the relationship between stable strategies and information update processes. We first
extend Plaza’s logic then demonstrate the conditions under which a stable outcome
is determined independently of the order of the iterative information update. This re-
sult gives an epistemic foundation for the order independence of iterated elimination
of disadvantageous strategies.
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1. Introduction

Dynamic epistemic logic (Gerbrandy, 1999) and its variants (cf. (Dit-

marsch et al.,, 2007)) are effective tools to discuss simply the updating

processes of each agents knowledge, and they were recently introduced

in the study of logical analyses of game theory. By means of Plaza’s

public announcement logic (Plaza, 1989), van Bentham (2007) ana-

lyzed game theoretic solution concepts by considering an information

updating process. In his setting, every player first chooses a strategy

as a tentative decision based on his decision criterion, and then some

information about the tentative decision is publicly revealed. By such

information revelations, each player’s information about the situation is

iteratively updated depending on the other players’ tentative decisions.

The information update may bring about a failure of the criterion
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to keep the tentative decision. That is, the information update may

suggest that another choice is preferable to some players, and they may

change their tentative decisions. In this setting, Benthem investigated a

notion of the stability of a strategy, which we call iterative updatability

in this paper. Roughly speaking, a tentative decision is iteratively up-

datable if no player has changed it for any number of public-revelations

of the sentences that have occurred up to this decision point. Through

this notion, Benthem characterized existent game-theoretic solution

concepts.

The purpose of our paper is to refine the approach of van Bentham

(2007) and analyze the relationship between stable strategies and in-

formation update processes. For this purpose, we also introduce a logic

based on Plaza’s public announcement logic (Plaza, 1989). To describe

game-theoretic components, such as players’ evaluations of a situation

and intentions for their choices, we first extend Plaza’s logic so that

information update might change the truth values of atomic formulas.

In our logic, all the atomic formulas are classified into four categories:

invariant, positively-monotonic, negatively-monotonic, and the others.

An invariant atomic formula represents a sentence whose truth value

does not change after any information update. In Plaza’s logic, all

the atomic formulas are regarded as invariant in this sense. On the

other hand, a positively-monotonic (resp. negatively) atomic formula

represents a sentence whose truth value remains true (resp. false) after

any information update if it was previously true (resp. false). This

extension allows us to describe simply the game-theoretic components

whose truth might change after some information updating. Then we

also introduce an extended Kripke-style possible world semantic and

show the soundness and completeness for this syntax.

Next we formalize the notion of iterative updatability in terms of our

logic to investigate its properties, especially with respect to information-

monotonicity. Our formalization of iterative updatability is an exten-
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Iterative Information Update and Stability of Strategies 3

sion of van Bentham (2007), where he considered the condition that

the iterated public-revelation of information represented by a single

sentence ensures the sentence itself is true, and thus he did not discuss

the order of the revelation process. On the other hand, we extend this

notion to the case where the information is represented by a set of sen-

tences and discuss first the order of publicly revealed sentences because

we assume that the information revelation occurs arbitrarily and no one

can control the order of publicly-revealed sentences. We show that if

publicly-revealed sentences are monotonic, then the order of publicly-

revealed sentences does not affect the information updatability. This

result indicates the order independence of iterated elimination of dis-

advantageous strategies. Moreover, we show that the iterative process

of information update preserves the logical implication between two

sentences if one of them is monotonic. This theorem is useful when we

compare different information updating processes.

Finally, we also demonstrate how to apply our results to the analyses

of game-theoretic situations. The first example is an exchange economy

with asymmetric information. By iterative updatability, we explain how

the quality of a product, which is initially private information, is re-

vealed to other market participants. As a second application, following

van Bentham (2007), we reexamine iterated elimination of disadvanta-

geous strategies. By means of our refined framework, we demonstrate

properties such as order independence, comparison of two criteria, and

its relation to the Nash equilibria.

Paper organization. Section 2 introduces the syntax and semantics

of our logic. Section 3 formulates the notion of iterative updatability,

and then shows its properties. Section 4 demonstrates how to analyze

a game-theoretic situation by iterative updatability. Finally, Section 5

concludes the paper.

main.tex; 15/01/2010; 1:19; p.3



4

2. Public announcement logic

In this section we introduce our inference system, which is an extension

of Plaza’s public announcement logic (Plaza, 1989).

2.1. Language

Let N be a set of players and P be an infinitely countable set of

atomic formulas (denoted by the symbols p, q, . . .). Here, we intro-

duce the classification of atomic formulas into the following four types:

information-invariant formulas (denoted by R), positively and nega-

tively information-monotonic formulas (denoted by Q+ and Q−), and

the others, where R = Q+ ∩ Q− and Q+ ∪ Q− ⊆ P. These vari-

ous categories of atomic formulas distinguish our logic from that of

Plaza’s. Throughout the paper, for brevity, R, Q+, and Q− are of-

ten called invariant , positively monotonic, and negatively monotonic

atomic formulas, respectively.

Formulas (denoted by ϕ, ψ, . . .) are constructed by the following

grammar, which is the same as in Plaza’s logic.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | ϕ↔ ϕ | Kiϕ | 〈ϕ〉ϕ

Intuitively, a formula of the form Kiϕ means that player i knows ϕ,

while a formula of the form 〈ϕ〉ψ means that ψ holds after the true

sentence ϕ has been publicly announced.

2.2. Axiomatic system

The axioms and inference rules of our system are as follows.

Axioms for the propositional tautology and epistemic operators:

A1 Every axiom of the propositional tautology is an axiom.

A2 Ki(ϕ⇒ ψ) ⇒ (Kiϕ⇒ Kiψ).

A3 Kiϕ⇒ ϕ.
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Axioms for the public announcement operator:

P1 〈ϕ〉ψ ⇒ ϕ.

P2 〈ϕ〉¬ψ ↔ ϕ ∧ ¬〈ϕ〉ψ.

P3 〈ϕ〉(ψ ∧ χ) ↔ 〈ϕ〉ψ ∧ 〈ϕ〉χ.

P4 〈ϕ〉Kiψ ↔ ϕ ∧Ki(ϕ⇒ 〈ϕ〉ψ).

P5 〈ϕ〉〈ψ〉χ↔ 〈〈ϕ〉ψ〉χ.

A theorem of our system is inductively defined as follows, and “ϕ is a

theorem of our system under the set Γ of assumptions” is denoted by

“Γ ` ϕ”.

R1 If ϕ is an axiom, then ` ϕ.

R2 Modus ponens: If ` ϕ and ` (ϕ⇒ ψ), then ` ψ.

R3 Necessitation: If ` ϕ, then ` Kiϕ.

R4 Substitution of equals for public announcement:

If ` ϕ↔ ψ, then ` 〈ϕ〉χ↔ 〈ψ〉χ and ` 〈χ〉ϕ↔ 〈χ〉ψ.

R5 Invariance for null information: If ` ϕ, then ` ψ ↔ 〈ϕ〉ψ.

Note that the system composed of A1-A3 and R1-R3 is the usual

multimodal propositional logic, K. On the other hand, axioms P1-P5

and inference rules R4 and R5 are used for reasoning about public

announcements.

In addition to all the axioms and inference rules introduced above,

Plaza’s logic includes the axiom that 〈ϕ〉q ↔ ϕ ∧ q for any atomic

formula q. Instead of this axiom, we introduce the following axiom

P0 and inference rule R6 to formalize the notions of invariance and

monotonicity, respectively.

Axiom for information-invariance:

P0 〈ϕ〉q ↔ ϕ ∧ q for all q ∈ R.
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Inference rule for monotonicity

M+ positive-monotonicity with respect to information update:

If ` ϕ⇒ ψ, then ` 〈ϕ〉¬q ⇒ 〈ψ〉¬q for all q ∈ Q+.

M− negative-monotonicity with respect to information update:

If ` ϕ⇒ ψ, then ` 〈ϕ〉q ⇒ 〈ψ〉q for all q ∈ Q−.

Axiom P0 means that the truth value of any invariant atomic formula

does not change after any announcement. On the other hand, inference

rule M+ means that if q is true after the announcement of information,

ψ, then it is also true after the announcement of more detailed informa-

tion, ϕ. In particular, considering the case when ψ is a theorem, then,

together with R5, it means that the truth of any positively-monotonic

atomic formula is preserved after any announcement if it is initially

true.

Here, we make some remarks on this extension of Plaza’s logic.

As mentioned in Section 1, in the framework of Plaza’s logic, the

truth value of an atomic formula does not change after any informa-

tion update. In other words, Plaza’s logic is a special case in which

R = Q+ = Q− = P (i.e., any atomic formula is treated as invariant).

To describe our target situation, however, in which the preferences or

intentions of players may change depending on information updates, we

require some distinction between invariant and non-invariant sentences.

Our logic is a minimal extension to solve this problem.

From the syntactic point of view, Plaza’s formalism allows us to

translate any formula into an equivalent one without the public an-

nouncement operator. Plaza used this property to prove some logical

meta-theorems, such as the completeness theorem (Plaza, 1989). On

the other hand, this property does not hold for our logic, but through

semantic extension we can also prove its completeness, which is shown

in the next subsection.
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Regarding the notion of monotonicity, we can extend it to general

formulas. We say that a formula χ is positively monotonic if it satisfies

the condition that if ` ϕ ⇒ ψ, then ` 〈ϕ〉¬χ ⇒ 〈ψ〉¬χ. We say that

χ is negatively monotonic, if it satisfies the condition that if ` ϕ⇒ ψ,

then ` 〈ϕ〉χ ⇒ 〈ψ〉χ. Clearly, this condition is a natural extension of

R6. We denote the set of positively and negatively monotonic sentences

by M+ and M− respectively. Note that M− is the set of formulas χ

for some ¬χ ∈M+, and that Q+ ⊆M+, Q− ⊆M−.

For M+ and M−, the following propositions hold.

Proposition 1

M+ is closed under the following operations:

1. If χ1 ∈ M+ and χ2 ∈ M+, then both of (χ1 ∧ χ2) and (χ1 ∨ χ2)

are also in M+.

2. If χ1 ∈M+, then Kiχ1 is also in M+.

Proposition 2

M− is closed under the following operations:

1. If χ1 ∈ M− and χ2 ∈ M−, then both of (χ1 ∧ χ2) and (χ1 ∨ χ2)

are also in M−,

2. If χ1 ∈M− and χ2 ∈M−, then 〈χ1〉χ2 is in M−.

These operations do not fully characterize either of M+ or M−.

For example, we can show that if χ1 ∈ M+ and χ2 ∈ M+, then

¬χ1 ⇒ 〈¬χ1〉χ2 are also in M+. Further, note that all theorems are

positively and negatively monotonic.

2.3. Semantics

Our language can be interpreted in the usual Kripke-style possible

world semantics, except for the interpretation of invariance and mono-

tonicity.
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A Kripke-model M is a triple (W, (R)i∈N , v), where W is a set of

states, Ri an accessibility relation over W for player i ∈ N , and v :

P ×W × 2P → {1, 0} is an assignment function. We assume that Ri is

reflexive. We impose the following conditions on v:

Definition 3 (Assignment function)

Invariance of R : For any q ∈ R, v(q, w,X ′) = v(q, w,X ′′) for any

w ∈W , and for any X ′, X ′′ ⊆W .

Monotonicity of Q+ : For any q ∈ Q+, if X ′ ⊆ X ′′ ⊆ W and

v(q, w,X ′′) = 1, then v(q, w,X ′) = 1 for any w ∈W .

Monotonicity of Q− : For any q ∈ Q−, if X ′ ⊆ X ′′ ⊆ W and

v(q, w,X ′′) = 0, then v(q, w,X ′) = 0 for any w ∈W .

Here, remember that R, Q+, and Q− are the sets of invariant and

positively and negatively-monotonic atomic formulas, respectively.

The difference between the usual Kripke semantics and ours lies in

the interpretation of atomic formulas. In the usual Kripke semantics,

the truth value of an atomic formula is determined for each state. By

means of this assignment function, however, we cannot treat a situation

in which the truth value of an atomic formula in a certain state may

change after some public announcement. In order to formalize such

dynamism, our idea is to extend the assignment function so that the

truth value of an atomic formula in a state is determined by a set

of states X ⊆ W . Then, we define the truth values of atomic formu-

las for such sets X,X ′, X ′′, . . . ⊆ W , which are obtained after public

announcements.

Definition 4 (Truth conditions)

The truth value of a formula in state w ofM = (W, (R)i∈N , v) is defined

as follows. Here, (w,M) |= ϕ denotes that ϕ is true in state w of model

M .

1. For an atomic formula q ∈ P, (w,M) |= q iff v(q, w,W ) = 1.
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2. For all ψ and ϕ, each of ¬ψ, ψ ⇒ ϕ, ϕ ∧ ψ, ϕ ∨ ψ, and ϕ ↔ ψ is

true in w of M iff it is true in the truth table of ψ and ϕ.

3. For all ψ and i ∈ N , (w,M) |= Kiψ iff for all w′ such that wRiw
′,

(w′,M) |= ψ.

4. For all ψ and ϕ, (w,M) |= 〈ψ〉ϕ iff (w,M) |= ψ and (w,M |ψ) |= ϕ,

where M |ψ = (W |ψ, (Ri|ψ)i∈N , v|ψ), W |ϕ = {w′ ∈ W : (w,M) |=
ψ}, and Ri|ψ and v|ψ are the restrictions of Ri and v to W |ψ,

respectively.

We also define that ϕ is valid (denoted by |= ϕ) iff (w,M) |= ϕ for any

model M and for any state w.

For the syntax and semantics introduced so far, we can prove the

following soundness and completeness theorem by a similar argument

as in Plaza (1989).

Theorem 5 (Soundness and Completeness)

For any formula ϕ, ` ϕ iff |= ϕ.

Proof. Due to space limitations, we only show the completeness. It

suffices to show that for all ϕ, if 0 ¬ϕ then ϕ is satisfiable. Let S(ϕ)

be the set of all sub-formulas of ϕ and we say that a set U of formulas

is S(ϕ)-maximal consistent if (1) for all ϕ′ ∈ S(ϕ) either one of ϕ′ and

¬ϕ′ is in U , (2) for all ϕ1 ∈ U there exists ϕ2 ∈ S(ϕ) such that either

ϕ1 = ϕ2 or ϕ1 = ¬ϕ2, (3) if ϕ1, ϕ2, . . . , ϕm ∈ U then 0 ¬(∧m
i ϕi). Let

M = (W, (Ri), v) be a Kripke-model such that

1. W = {U : U is a S(ϕ)-maximal consistent set.},

2. URiU
′ iff ϕ is in U ′ for all ϕ such that Kiϕ ∈ U ,

3. for all p ∈ P, v(p, U,W ) = 1 iff p ∈ U ,

4. for all Y 6= W and all p ∈ P \ (Q+ ∪ Q−), v(p, U, Y ) = 1 iff

Y = {U ′ ∈W : ϕ1 ∈ U ′}, 〈ϕ1〉p ∈ U for some 〈ϕ1〉p ∈ S(ϕ),
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5. for all Y 6= W and all q ∈ Q+ ∩Q−, v(p, U, Y ) = 1 iff q ∈ U .

6. for all Y 6= W and all q ∈ Q− \ Q+, v(q, U, Y ) = 1 iff there exists

ψ ∈ S(ϕ) such that Y ⊇ {U ′ ∈W : ψ ∈ U ′} and that 〈ψ〉q ∈ U .

7. for all Y 6= W and all q ∈ Q+ \ Q−, v(q, U, Y ) = 1 iff either q ∈ U
or there exists ψ ∈ S(ϕ) such that Y ⊆ {U ′ ∈ W : ψ ∈ U ′} and

that 〈ψ〉q ∈ U .

We can easily confirm that the truth assignment satisfies our condition

on the assignment function. Note that, for all ψ1, ψ2 ∈ S(ϕ), {U ′ ∈W :

ψ1 ∈ U ′} ⊆ {U ′ ∈ W : ψ2 ∈ U ′} iff ` ψ1 ⇒ ψ2. Then, by induction on

ψ ∈ S(ϕ), we can show that ψ ∈ U iff (U,W ) |= ψ for all ψ ∈ S(ϕ). 2

It is obvious that all the theorems and all the contradictions of our

axiomatic system are invariant: they are both positively and negatively

monotonic. On the other hand, nontrivial elements in M+ ∪M− are

all generated by atomic formulas in Q+ ∪ Q−. In fact, we have the

following result as an application of the completeness theorem:

Proposition 6

If Q+ ∪ Q− = ∅, then for any formula ϕ ∈ M+ ∪M−, either ` ϕ or

` ¬ϕ.

Proof. Suppose to the contrary that there exists ϕ ∈ M+ ∪M− such

that 0 ϕ, 0 ¬ϕ. It suffices to consider the case when ϕ ∈M+.

First, we consider the case where for any Kripke-model whose set of

the states is a singleton, ϕ is false. By the completeness theorem, we

have a finite model M1 = (W1, (Ri,1), v1) and w ∈ W1 such that for

some state w, (w,M1) |= ϕ. We can assume |W1| is minimal. Then, we

can find a literal p such that (w,M1) |= p and |W1| > |W1|p|. Thus,

(w,M1) |= ϕ∧ 〈p〉¬ϕ, which contradicts the assumption that ϕ ∈M+.

Now, consider the second case where there exists a Kripke-model M2

such that the set of states is a singleton, and that ϕ is true: W2 = {w∗}
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and (w∗,M2) |= ϕ. By the completeness theorem, we have a model

M3 = (W3, (Ri,3), v3) and s∗ ∈W3 such that (s∗,M3) |= ¬ϕ.

Let us construct a model M4 as follows: W4 = W3∪{a1, a2, . . . , am},
where W3 ∩ {a1, a2, . . . , am} = ∅ ; for all x, y ∈ W3, xRi,4y iff xRi,3y ;

for all x, y /∈W3, xRi,4y iff x = y. Let Xk denote W3 ∪{a1, a2, . . . , ak}.
If l < k and Xk ⊆ X then v3(q, al, X) is determined as M2; otherwise it

is determined by (1−v2(q, w∗,W2)). On the other hand, for all w ∈W3,

v3(q, w,X) is determined as M3 if X ⊆W3; otherwise, it is determined

as M2.

In this model, inductively we can prove that for all deg(ψ) ≤ k − l,

for all w ∈ Xl and X ⊇ Xk, (w,M4|X) |= ψ if (w∗,M2) |= ψ. (Here,

“deg” stands for the number of logical connectives.) Thus, in the case

that n = deg(ϕ) + 1, (s∗,M4|Xn) |= ϕ. On the other hand, there exists

a literal formula q such that it is true in M2. Let us define qk = 〈qk−1〉q.
Then, Xn|qn = W3. Thus, (s∗,M4|qn−1) |= ¬ϕ. �

3. Iterative updatability

By the logic introduced in the previous section, we define the itera-

tive updatability and present useful properties as well as an economic

example.

3.1. Definition

We consider the condition under which players maintain a tentative

decision. Note that even if the player’s criterion to maintain the tenta-

tive decision is satisfied initially, the revelation of this fact may bring

about a failure of the criterion and a change in the tentative decision.

Thus, additional conditions are required for the tentative decision to

be maintained subsequently. To see that, let us consider the following

situation. Two persons, Mr. M and Mr. H, respectively wonder whether
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they should attend a meeting or not. Here we assume that they are

friends and want to be at the meeting, thus each of them intends to

attend the meeting initially. Now let ϕM (ϕH , resp.) be the sentence

representing “Mr. M (Mr. H, resp.) intends to attend the meeting”.

For this setting, if Mr. M does not change his tentative decision and

Mr. H hears this fact, ϕM , then he does not change his tentative de-

cision (i.e., 〈ϕM 〉ϕH), either. After that, Mr. M hears the fact that

Mr. H still intends to attend the meeting, and he should not change

his tentative decision (i.e., 〈ϕM 〉〈ϕH〉ϕM ). Eventually, their tentative

decisions are maintained against (possibly infinite) such information

update processes.

In general, for the two-players case, let ϕi denote a condition for

player i (for i ∈ {1, 2}) to maintain his tentative decision, and the

tentative decision may be changed even if ϕi is true for all i initially.

Suppose that a player, i, observes that the other player, j (for j 6= i),

does not change his tentative decision, namely ϕj . Then, even if each

player does not change his tentative decision initially, the observation

can change his information and turn ϕi into a false sentence. In terms of

our logic, 〈ϕj〉ϕi may be false while ϕj and ϕi are both true. Further,

in turn, observing that i does not change the tentative decision re-

gardless of his observation on j, j might change his tentative decision.

That is, 〈ϕj〉〈ϕi〉ϕj might be false even if 〈ϕj〉ϕi. Similarly, for the

tentative decision to be maintained, we also require 〈ϕj〉〈ϕi〉〈ϕj〉ϕi,

〈ϕj〉〈ϕi〉〈ϕj〉〈ϕi〉ϕj , and so on. In summary, for a tentative decision

to be unchanged, it is necessary to take such an iterated information

update process into consideration. More formally, a tentative decision

is stable only if 〈ϕi〉ϕj , 〈ϕj〉〈ϕi〉ϕj , 〈ϕi〉〈ϕj〉ϕi and similar propositions

are all true.

Let us formalize the robustness against information updates, itera-

tive updatability. We mean by C a set of formulas such that each formula,

ϕ in C, represents a given necessary condition for a player to keep his
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tentative decision. Note that ¬ϕ is a sufficient condition for a player to

change his tentative decision for all ϕ ∈ C. Then we can formulate our

target condition by C:

Definition 7 (Iterative Updatability)

We say that a set of formulas C is iteratively updatable in a state

of the Kripke model (w,M) if, for any finite sequence of formulas,

ψ1, ψ2, . . . , ψk ∈ C,

(w,M) |= 〈ψ1〉〈ψ2〉 . . . 〈ψk−1〉ψk.

van Bentham (2007) originally focused on the case when |C| = 1. In case

of |C| > 1, the order of the revealed sentence in a sequence does matter.

In the definition, we impose a strong condition that any information

revealed process with an arbitrary order keeps the sentences to be true

because the information revelation process is not controlled.

If C is iteratively updatable, then each sentence is true and any

iterated revelation of information described by the sentence maintains

the sentences’ truth values as true. Then, the condition to discuss is the

iterative updatability of C. We shall discuss properties of the iterative

updatability in the following subsection.

3.2. Basic properties

In this subsection, we show that if C consists of information-monotonic

sentences, the iterative updatability of C has useful properties.

The first property is related to the order of the revealed sentences.

For iterative updatability, it does not suffice to consider only the case

when specific sentences are revealed in fixed turns, even if they are

publicly-revealed iteratively. On the other hand, in the case of C ⊆M−,

we can prove the following theorem.

Theorem 8 (Single Sequence Property)

Suppose that C is a subset of M−. Then, C is iteratively updatable if

and only if there exists a sequence ψ1, ψ2, . . . in C such that (1) every
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ϕ ∈ C appears in the sequence infinite times and (2) 〈ψ1〉〈ψ2〉 . . . 〈ψk−1〉ψk

is true for all k = 1, 2, . . ..

Proof. Let ϕ1, ϕ2, . . . , ϕk be any finite sequence in C. Define Fk by

F1 = ψ1 and Fk = 〈Fk−1〉ψk. Let ψl1, ψl2, . . . , ψlk be a subsequence

of ψ1, ψ2, . . . such that ψl1 = ϕ1, ψl2 = ϕ2, . . . , ψlk = ϕk. From the

negative monotonicity of ϕ1, we have ` Fl1 ⇒ ϕ1. Thus, by P1, `
Fl2−1 ⇒ ϕ1. From the negative monotonicity, ` 〈Fl2−1〉ψl2 ⇒ 〈ϕ1〉ϕ2.

Through repetition, we have ` Flk ⇒ 〈ϕ1〉〈ϕ2〉 . . . 〈ϕk−1〉ϕk. 2

The second property we address is related to logical implication and

iterative updatability. Consider the two sets of criteria for players to

keep their tentative decision, C and C′. The iterative updatability of

C does not imply that of C′ even if C consists of stronger conditions

than those of C′. On the other hand, if they are negatively information-

monotonic then logical implication is preserved.

Theorem 9 (Comparison Theorem)

Let ψ1, ψ2 . . . and ϕ1, ϕ2, . . . be two sequences of formulas such that for

all i = 1, 2, . . . , n, ` ψi ⇒ ϕi. Assume that one of {ϕi, ψi} is in M− for

all i = 1, 2, . . . , n,. Then,

` 〈ψ1〉〈ψ2〉 . . . 〈ψn−1〉ψn ⇒ 〈ϕ1〉〈ϕ2〉 . . . 〈ϕn−1〉ϕn.

Proof. The theorem trivially holds for n = 1. Let Fn and Gn be in-

ductively defined by F1 = ψ1, G1 = ϕ1, Fk = 〈Fk−1〉ψk, and Gk =

〈Gk−1〉ϕk for k > 1. Suppose that ` Fk−1 ⇒ Gk−1. Consider the

case when ψk ∈ M−. From the negative monotonicity, ` 〈Fk−1〉ψk ⇒
〈Gk−1〉ψk. Since ` ψk ⇒ ϕk, we have ` 〈Gk−1〉ψk ⇒ 〈Gk−1〉ϕk. Then,

` 〈Fk−1〉ψk ⇒ 〈Gk−1〉ϕk. For the case of ϕk ∈ M−, we can also prove

it by a similar discussion. 2

Since the negative monotonicity of only one of two formulas is as-

sumed, this theorem is applicable to analyzing the case when the target
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Iterative Information Update and Stability of Strategies 15

condition is a non-monotonic sentence. It might be unclear how the

truth value of the target sentence is changed by information updates,

and thus we sometimes focus on the sufficient or necessary condi-

tion, which is logically clearer than the target condition. If the nec-

essary or sufficient condition is information-monotonic, then iterative

updatability preserves both sufficiency and necessity.

In the definition of iterative updatability, we assume that the formu-

las in C are publicly revealed successively rather than simultaneously.

By the following theorem, it does not matter whether simultaneous

revelations are allowed.

Theorem 10 (Simultaneous Theorem)

Let ψ1, ψ2, . . . be a sequence of formulas in C such that for all ϕ ∈ C,
the occurrence of ϕ in the sequence is infinite. Further, let any formula

ϕ∗ be in C. If C ⊂ M− then for all n and m, there exists k ≥ 1

such that ` Fk ⇒ Gn,m, where F1 = ψ1, Fk = 〈Fk−1〉ψk, G1,m = ψ1,

Gl,m = 〈Gl−1〉ψl for l 6= m, Gl,m = 〈Gm−1〉(ψm ∧ ϕ∗) for l = m.

Proof. : Let χ = 〈ψm〉ϕ∗. First, ` χ ⇒ ψm ∧ ϕ∗ from the negative

monotonicity. Define En by E1 = ψ1; Ek = 〈Ek−1〉ψk for k 6= 1,m;

Em = Em−1χ. By comparison theorem and the negative monotonicity

of ψm ∧ ϕ∗, ` En ⇒ Gn,m. Further, by the single sequence property,

there exists k such that ` Fk ⇒ En. 2

Note that all the theorems presented here still hold for any extended

axiomatic system.

3.3. An exchange economy

To illustrate our concept and results above, we present an exchange

market model with two buyers B1, B2, and one seller S. Each buyer

has money, and the seller has one indivisible product, which might be

of high or low quality. The seller’s utility depends only on the money
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he has. When a buyer knows the quality of the product, he evaluates

a high-quality product at $8 and a low-quality product at $4.1 On the

other hand, if he does not know the quality, then he evaluates the

product at $6.

We consider a two-state model such that W = {h, l} and Ri for

i ∈ {S,B1, B2}, defined by

− for B1 : hRB1h, hRB1l, lRB1l, lRB1h,

− for S and B2 : hRSh, lRSl, hRB2h, lRB2l.

In state h, the product is of high quality, while in state l, it is of low

quality. Then, B2 and S know the quality of the product, while B1

does not know it initially.

Let us consider the case when the players are going to do the fol-

lowing transactions denoted by

T0: S sells to B1; B1 pays $5 to S.

On the other hand, we assume that alternative transactions are possible

for each pair if they can organize them independently. In particular, the

pair of B2 and S can choose an alternative transaction, denoted by

T1: S sells to B2; B2 pays $6 to S.

Further, each individual can decide not to participate in any transac-

tion.

In each state, T0 is not acceptable to the players in the sense that

some player eventually deviates from T0. In state h, B2 and S can

increase their payoffs from (0, 5) to (2, 6) by changing the tentative

decision to T1, and thus, they should do so. On the other hand, in

state l, no player attempts to change the tentative decision initially. By

observing that neither B2 nor S have changed their tentative decisions,
1 This preference is represented by the utility function u(xh, xl,−p) =

4min {2, 2xh + xl} − p, where xh is the quantity of a high-quality product, xl is
that of a low-quality product, and p is the payment.
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however, B1 deduces that the quality of the product is low. Then, his

evaluation of the product is changed to $4. Paying $5 is no longer

profitable for him, and thus he attempts to interrupt T0 and does not

participate in any other transaction.

The iterative updatability we introduced is a formalization of the

acceptability in this situation. Let C = {qi : i = B1, B2, s}, where qi
denotes that ‘i maintains the tentative decision, namely, agreeing to

T0’. Further, let ϕ be the sentence that T1 increases the utilities of

B2 and S from T0, and let ψ indicate that interrupting T0 increases

the utility of B1. We can assume that ` qj ⇒ ¬Kjϕ for j = B2, S,

and that ` qB1 ⇒ ¬KB1ψ. Then, in our semantics, C is not iteratively

updatable. To see this, first note that 〈¬KB2ϕ〉¬KB1ψ is false in any

state. Further, ¬KB2ϕ and ¬KB1ψ are all negatively monotonic, and

thus, by the Comparison Theorem, 〈qB2〉qB1 is also false.

4. Iterated elimination of strategies

In this section, as an application of our results in the previous section,

we examine iterated elimination (IE) of disadvantageous strategies in

our framework.

4.1. Definition

Let Xi be a finite strategy set of i ∈ N . We abbreviate
∏

i∈S X
i by

XS for all S ⊆ N . By xS we denote a typical element of XS for all

S ⊆ N , and by (xS , xN\S) we denote an element in XN such that the

projections into XS and XN\S are xS and xN\S , respectively. Further,

let ui : XN → < be the utility function of i ∈ N .

We introduce three base criteria for the elimination of disadvanta-

geous strategies. A strategy xi ∈ Xi is strictly dominated iff ∃yi ∈ Xi

∀xN\{i} ∈ XN\{i}: ui(yi, xN\{i}) > ui(xi, xN\{i}). It is weakly domi-

nated iff ∃yi ∈ Xi ∀xN\{i} ∈ XN\{i}: ui(yi, xN\{i}) ≥ ui(xi, xN\{i})
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with at least one strict inequality. Moreover, it is a never best response

iff ∀xN\{i} ∈ XN\{i} ∃yi ∈ Xi : ui(yi, xN\{i}) > ui(xi, xN\{i}). The

survivors of iterated elimination (SIE), X∗N , is defined by the following

algorithm for any of the base criteria for elimination:

begin for all i ∈ N , X∗i := Xi;

while there exist j ∈ N and xj ∈ X∗j that

meets the base criterion for elimination in the reduced game,

the strategy set of which is restricted to X∗N

begin for such j and xj do X∗j := X∗j \ {xj} end

end

The SIE of strictly or weakly dominated strategies can be traced

back to Gale et al., (1950), Gale (1950), and Luce and Raiffa (1957).

Bernheim (1984) and Pearce (1984) independently discussed the IE of

never best response strategies2.

4.2. Epistemic characterization

These strategies have been characterized by static epistemic models.

First, Pearce (1984) characterized the SIE of never best response as

those chosen in a situation in which it is common knowledge that each

player maximizes his utility with respect to his prior belief about other

players’ strategy choices as well as the structure of the game. Tan

and Werlang (1988) refined this conjecture and gave a formal proof

in a Bayesian framework. Samuelson (1992) considered a situation in

which every player chooses a subset of strategies as admissible ones. He

pointed out that it is impossible to characterize the set of the SIE of

weakly dominated strategies as those chosen in a situation in which it is

2 If correlated strategies are taken into consideration, the SIE of the never best
response is equivalent to the SIE of strictly dominated strategies
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common knowledge that each player’s admissible strategies are weakly

non-dominated strategies with respect to his belief.

Van Benthem (2007) initiated an approach by public announcement

logic to these concepts. Let xN ∈ XN be a given status quo in which

each player j chooses xj as a tentative decision. For all yi ∈ Xi, let f(yi)

denote the statement ‘for all xN ∈ XN , ui(yi, xN\{i}) > uj(xi, xN\{i}) if

xN is the tentative decision’. Further, we denote by g(yi) the statement

‘for all xN ∈ XN , ui(yi, xN\{i}) > uj(xi, xN\{i}) if xN is the tentative

decision’. Here, we do not assume any change in the utility function.

Thus, both f(yi) and g(yi) are information-invariant.

Let us consider three classes of criteria for a player to keep their

tentative decision:

C1 = {¬Kif(yi) : i ∈ N, yi ∈ Xi}.

C2 = {¬Ki(∨yif(yi)) : i ∈ N, yi ∈ Xi}.

C3 = {¬((Ki(f(yi) ∨ g(yi)) ∧ ¬Ki¬f(yi))) : i ∈ N, yi ∈ Xi}.

Each of them represents the condition which a player adopts as a

criterion for him to change his tentative decision. Following the idea

of C1, a player changes the tentative decision if he knows of a specific

alternative plan to increase his payoff. On the other hand, according

to the typical sentence, ¬Ki(∨yif(yi)), in C2 that a player changes his

decision if he merely knows of the existence of such a plan. Further, a

formula in C3 means that if i knows a specific alternative plan that does

not decrease his payoff (i.e., Ki(f(yi) ∨ g(yi))), and that it is possible

that it will increase his payoff (i.e., ¬Ki¬f(yi)) then he changes his

tentative decision.

In van Bentham (2007), he considered iterative updatability of the

conjunction of Ci (i = 1, 2), ∧ϕ∈Ci(ϕ). He focused on a Kripke-model, in

which any state is identified by a strategy profile chosen by the players,

and every player knows only his own strategy. Then, he demonstrated

the equivalence between the eliminated strategies and the states of
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the Kripke-model eliminated by information updates. According to his

observation, the elimination of states involved by the announcement of

a sentence in C1 (resp. C2) is equivalent to elimination of strictly (resp.

weakly) dominated strategies. Similarly, we can easily show that the

counterpart of C3 is weak domination.

Note that the dynamic information update process is applicable to

any given epistemic state. Thus, the dynamic reformulation provides

a solution concept for epistemically diverse situations, rather than an

artificial situation to characterize existent solution concepts that van

Bentham (2007) discussed.

4.3. Properties

Our first contribution here is to clarify the order independence of

the elimination process from a dynamic viewpoint, which van Ben-

tham (2007) did not address. It is well known that the set of the

SIE of strictly dominated strategies as well as the never best response

strategies is uniquely determined while the algorithm above is non-

deterministic. On the other hand, the SIE of weakly dominated strate-

gies is not. Gilboa, et al., (1990) stated sufficient conditions for the

order independence in non-epistemic terms.

According to Theorem 8, the order of information update does not

matter at all, since all the sentences in C1 or C2 are negatively mono-

tonic. On the other hand, any sentence in C3 is not negatively mono-

tonic, and thus, the set of the SIE of weakly dominated strategies is

order dependent. In summary, the well-known properties of order inde-

pendence and dependence can be ascribed to negative-monotonicity.

The second contribution is to clarify the role of monotonicity in the

comparison of the conditions generated by C1, C2, and C3. Obviously, C2

is stronger than C1 in the sense that ¬Ki(∨yif(yi)) ⇒ ¬Kif(yi). It is,

however, not trivial that the iterative updatability of C2 implies that of

C1, which van Bentham (2007) demonstrated by a fixed-point method
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on Kripke-models. On the other hand, it is also a direct consequence

of the Comparison Theorem in the previous section since all sentences

in C1 are negatively monotonic. Further from the Comparison theorem

we obtain the same relationship between C3 and C1.

The third contribution is related to Nash equilibrium and the iter-

ative updatability of Ci. Consider the formula q∗ = ∨i∈N (∨yif i(yi)),

which translates to ‘the tentative decision is not a Nash equilibrium’.

We focus on a sentence, E = ¬(K1q
∗ ∨K2q

∗ ∨ . . . ∨Knq
∗), which can

be translated into the following:

‘No one knows that the tentative decision is not a Nash equilibrium’.

First, if E is true then it is iteratively updatable. Formally, we obtain

the following lemma.

Lemma 11 (Idenpotency Lemma)

Assuming that q∗ ∈ Q∗, if E = ¬(K1q
∗ ∨ K2q

∗ ∨ . . . ∨ Knq
∗), then

` E ↔ 〈E〉E.

Proof. ` 〈E〉E ⇒ E is trivial. We show that ` E ⇒ 〈E〉E. It suffices

to show that ` E ⇒ 〈E〉¬Kiq
∗ for all k.

From invariance of q∗, ` 〈E〉q∗ ↔ E ∧ q∗. Further, ` E ⇒ q∗ and,

thus, ` (¬E ⇒ 〈E〉q∗) ⇒ q∗. By A2 and R2 we have that

` ¬Kiq
∗ ⇒ ¬Ki(¬E ⇒ 〈E〉q∗). Then ` E ⇒ ¬Ki(¬E ⇒ 〈E〉q∗) since

` E ⇒ ¬Kiq
∗. Further, ` 〈E〉¬Kiq

∗ ↔ E ∧ ¬Ki(¬E ⇒ 〈E〉q∗) by P2.

It follows that ` E ⇒ 〈E〉¬Kiq
∗. 2

Further, E means the iterative updatability of Ck (k = 1, 2). That is,

if no one knows that the tentative decision is not a Nash equilibrium,

then every player who changes the tentative decision, only if he knows

that the deviation to another strategy increases his payoff, does not do

so regardless of iterative information updates.
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Theorem 12

Let q ∈ Q∗ and E := ¬(K1q
∗ ∨K2q

∗ ∨ . . .∨Knq
∗). Assume that for all

k = 1, 2, . . . , n, there exists some i ∈ N such that ` ¬ϕk ⇒ Kiq. Then,

` E ⇒ 〈ϕ1〉〈ϕ2〉 . . . 〈ϕm−1〉ϕm.

Proof. E is in M−, and ` E ⇒ ϕl for all l. Define Fk and Gk by

F1 = E; Fk = 〈Fk−1〉E; G1 = ϕ1; Gk = 〈Gk−1〉ϕk. Then by Theorem

9, ` Fk ⇒ Gk. Further, by the previous lemma, we have ` E ↔ 〈E〉E,

and thus, ` E ⇒ Fk. Therefore, ` E ⇒ Gk. 2

In summary, the notion, ‘none knows that the tentative decision

is not a Nash equilibrium’, is, in our view, a noteworthy concept for

analyzing epistemically diverse situations.

4.4. Information-variant utilities

Our results in the previous subsection depend on the assumption that

the players’ utility functions are invariant. To see this, consider a two-

person game model with two states, a and b, and a variant utility

function. An accessible relationship R1 is defined by xR1y for all x, y ∈
{a, b}, while R2 is defined by xR2x for all x ∈ {a, b}. Player 1 has two

possible strategies, T and B, while player 2 has L and R.

The utilities are represented in the four tables below. They depend

on the pair of strategies, the state of the Kripke-model, and the set

of remained states. The upper two tables represent the utilities when

there remains only one state while the lower two represent those when

the all states remain. In each square, the lower left value represents the

utility of player 1, and the upper right value represents that of player

2.
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L R

T

B

state a in {a}

2

1

1 0

0 1
2 0

0 2

L R

T

B

state b in {b}

2

1

1 2

0 1
2 0

10 2

L R

T

B

state a in {a, b}

1

1 0

0 1
2 0

5 2

L R

T

B

state b in {a, b}

1

1 2

0 1
2 0

5 2

All tables differ from each other in the utility of player 1 when (B,L)

is chosen. Then, player 1 enjoys 0 if the state is a and he knows it, while

he enjoys 10 if the state is b and he knows it. When he does not know

which of a and b is the true state he evaluates his utility as 5, which is

the result from the expectation with probability 1/2 for each state.

Suppose that x = (T,L) is the tentative decision in any state. Let ϕ

denote the statement ‘u2(T,R) > u2(x)’, and let ψ denote ‘u1(B,L) >

u1(x)’. Then, ¬K2ϕ,¬K1ψ ∈ C. Note that in this case ¬K1ψ is not

negatively monotonic.

(L, T ) is not maintained because in any state on {a, b}, K1ψ is true.

In state a, however, both ¬K1ψ and ¬K2ϕ become true after ¬K2ϕ

is publicly revealed. That is, 〈¬K2ϕ〉〈¬K1ψ〉 . . . is true. According to

the theorems in the previous section, this phenomenon would not be

observable if ψ and ϕ were negatively monotonic.
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5. Conclusions

We have discussed the epistemic conditions for the stability of strate-

gies in a situation in which each player chooses a tentative decision

under iterative public-revelation of information about the other play-

ers’ choices. To analyze these conditions, we extended Plaza’s public

announcement logic by adding the notions of information-invariance

and information-monotonicity. By means of these notions, we clarified

the conditions for robustness with respect to the order of information

update that was not investigated in van Bentham (2007).

Our analysis has room for improvement. The applications presented

in this paper are still simple. In particular, we focused only on the case

in which any information update is done through public revelation.

That is, we did not consider various types of update processes as was

discussed in Ditmarsch et al., (2007). Our simple logic, however, might

open up new approaches to the research issues investigated in this

paper, such as an analysis taking syntactic approach.
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