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Summary 

 The purpose of this paper is to extend a single-bounded dichotomous choice 

linear projection model (Watanabe and Asano, forthcoming) to a 

double-bounded dichotomous choice model. With a dichotomous choice 

linear projection model, it is possible to make a consistent estimation of 

mean willingness to pay only through a sample average weighted by the 

density function of a bid. It is, however, not possible to apply this model to a 

double-bounded model, since the density in the second stage is unknown. 

This paper extends this model to a double-bounded case without impairing 

the simplicity of the single-bounded linear projection model. In addition, 

this paper shows that like the single-bounded linear projection model, the 

double-bounded linear projection model does not contain any risk of a 

specification error. It also indicates that the efficiency obtained in the 

double-bounded linear projection model is almost equivalent to that of a 

parametric model based on the Monte Carlo simulation. 

                                                        
1 Correspondence:  Department  of  Economics,  Osaka  University  of  Economics,  2-2-8,  Osumi,  
Higashiyodogawa-ku,  Osaka,  533-8533,  Japan.  E-mail:  wmasa@osaka-ue.ac.jp,  Tel and Fax:  
+81-6-6328-2431 
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1. Introduction 

The purpose of this paper is to extend the linear projection model in a single-bounded 

dichotomous choice contingent valuation (CV) developed by Watanabe and Asano (forthcoming) 

to a double-bounded dichotomous choice case. In many practical applications, a parametric 

model typified by Hanemann et al. (1991) is used for the double-bounded dichotomous choice CV. 

It is possible to make an efficient estimation from the parametric model by adopting a maximum 

likelihood method only when the probability distribution is correctly specified. This efficiency, 

however, is always accompanied with inconsistency caused by specification error. In order to 

avoid such inconsistency, Carson et al. (1994) and McFadden (1994) applied the self-consistency 

algorithm (Turnbull, 1974, 1976) to a double-bounded dichotomous choice CV. With this 

nonparametric model based on Turnbull, it is not possible to explicitly obtain any estimator of the 

survival function of willingness to pay (WTP). This requires a numerical calculation similar to the 

EM algorithm. For this reason, there is a limitation on bringing it into practical application2

                                                        
1 See Day (2007) and Haab and McConnell (1997). 

. In 

addition, only the lower bound of the mean WTP is consistently estimated, because the 

consistency of the survival function is ensured only at each bid point. 

On the other hand, with a single-bounded dichotomous choice linear projection model, it is 

possible to make a consistent estimation of the mean WTP only through a sample average 

weighted by the density function of a bid. Moreover, it is characterized by the fact that there is no 

risk of specification error. Considering that a double-bounded dichotomous choice case is 

frequently employed in practical application, a simple estimation model needs to be developed. 

This is required not only from the viewpoint of practical operational possibility but also from the 

viewpoint of the elimination of arbitrariness of investigators for estimation as well as the 

improvement of evaluation transparency. One of the main objectives of applying CV is to make a 

cost-benefit analysis of public projects. Thus, ensuring the reliability of evaluation is an essential 

issue. 
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As mentioned above, with a linear projection model, it is possible to make a consistent 

estimation of the mean WTP by calculating a sample average weighted by the density function of 

a bid. As will be described later, however, the model cannot be applied to a double-bounded case 

without making any modification because an answer in the second stage is dependent on an 

answer in the first stage. For this reason, in this paper, a method is developed to extend a linear 

projection model to the double-bounded dichotomous choice CV. In order to provide a simplified 

explanation, this paper explains only a double-bounded case, although the model can also be 

applied to a multiple-bounded case. 

This paper consists of the following sections: In Section 2, existing estimation models in the 

double-bounded dichotomous choice CV are overviewed in order to clarify the features of the 

model in this paper. In Section 3, the model developed by Watanabe and Asano (forthcoming) is 

briefly reviewed and problems regarding the extension to a double-bounded case are described. In 

Section 4, a linear projection model for double-bounded dichotomous choice is developed. In 

Section 5, through the Monte Carlo simulation, performances in a small sample are examined. 

Finally, in Section 6, the conclusion and future development are explained. 

 

2. Existing estimation models in double-bounded dichotomous choice CV 

To clarify the features of a linear projection model, we will first provide an overview of a 

typical estimation model, which has frequently been used in the double-bounded dichotomous 

choice CV. 

In a standard double-bounded dichotomous choice model, WTP of observation 𝑖𝑖, 𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖 , is 

specified with the following exponential type:  

𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧𝑖𝑖𝜃𝜃 + 𝜂𝜂𝑖𝑖)⋯ (1) 

Here,  𝑧𝑧𝑖𝑖  is the attribute vector of  𝑖𝑖,  𝜃𝜃  is the corresponding parameter vector, and 𝜂𝜂𝑖𝑖  is the 

random disturbance term with independent identical distribution. In addition, the cumulative 

distribution function of the random disturbance term is 𝐺𝐺(𝑡𝑡) ≡ 𝑊𝑊𝑃𝑃(𝜂𝜂𝑖𝑖 ≤ 𝑡𝑡). The probability that a 
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respondent  𝑖𝑖  says “pay (yes)” both at the first stage (𝑘𝑘 = 1) and at the second stage (𝑘𝑘 = 2) 

when a bid, 𝑡𝑡𝑘𝑘𝑖𝑖 (𝑘𝑘 = 1,2, 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛), is offered for improvement of certain environmental 

quality is 𝑊𝑊𝑃𝑃(𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑖𝑖); the probability that the respondent says “yes” at the first stage and “do not 

pay (no)” is 𝑊𝑊𝑃𝑃(𝑦𝑦𝑖𝑖 ,𝑛𝑛𝑖𝑖); the probability that the respondent says “no” at the first stage and “yes” at 

the second stage is 𝑊𝑊𝑃𝑃(𝑛𝑛𝑖𝑖 ,𝑦𝑦𝑖𝑖); and the probability that the respondent says “no” both at the first 

and the second stage is 𝑊𝑊𝑃𝑃(𝑛𝑛𝑖𝑖 ,𝑛𝑛𝑖𝑖). At this point, the probabilities are as follows:  

𝑊𝑊𝑃𝑃(𝑦𝑦𝑖𝑖 , 𝑦𝑦𝑖𝑖) = 1 − 𝐺𝐺(𝑙𝑙𝑛𝑛(𝑡𝑡2𝑖𝑖) − 𝑧𝑧𝑖𝑖𝜃𝜃)  , 𝑊𝑊𝑃𝑃(𝑦𝑦𝑖𝑖 ,𝑛𝑛𝑖𝑖) = 𝐺𝐺(𝑙𝑙𝑛𝑛(𝑡𝑡2𝑖𝑖) − 𝑧𝑧𝑖𝑖𝜃𝜃)− 𝐺𝐺(𝑙𝑙𝑛𝑛(𝑡𝑡1𝑖𝑖) − 𝑧𝑧𝑖𝑖𝜃𝜃) ,         

𝑊𝑊𝑃𝑃(𝑛𝑛𝑖𝑖 ,𝑦𝑦𝑖𝑖) = 𝐺𝐺(𝑙𝑙𝑛𝑛(𝑡𝑡1𝑖𝑖) − 𝑧𝑧𝑖𝑖𝜃𝜃)− 𝐺𝐺(𝑙𝑙𝑛𝑛(𝑡𝑡2𝑖𝑖) − 𝑧𝑧𝑖𝑖𝜃𝜃),   𝑊𝑊𝑃𝑃(𝑛𝑛𝑖𝑖 ,𝑛𝑛𝑖𝑖) = 𝐺𝐺(𝑙𝑙𝑛𝑛(𝑡𝑡1𝑖𝑖) − 𝑧𝑧𝑖𝑖𝜃𝜃)      ⋯ (2) 

If the indicator function is defined as follows, then the log likelihood shown below is obtained: If 

a respondent  𝑖𝑖 says “yes” both at the first and second stage, 𝐼𝐼𝑖𝑖
𝑦𝑦𝑦𝑦 = 1, and otherwise 𝐼𝐼𝑖𝑖

𝑦𝑦𝑦𝑦 = 0. If 

the respondent says “yes” at the first stage and “no” at the second stage, 𝐼𝐼𝑖𝑖
𝑦𝑦𝑛𝑛 = 1, and otherwise 

𝐼𝐼𝑖𝑖
𝑦𝑦𝑛𝑛 = 0. If the respondent says “no” at the first stage and “yes” at the second stage, 𝐼𝐼𝑖𝑖

𝑛𝑛𝑦𝑦 = 1, and 

otherwise 𝐼𝐼𝑖𝑖
𝑛𝑛𝑦𝑦 =0. If the respondent says “no” both at the first and second stage, 𝐼𝐼𝑖𝑖𝑛𝑛𝑛𝑛 = 1, and 

otherwise 𝐼𝐼𝑖𝑖𝑛𝑛𝑛𝑛 = 0.  

𝑙𝑙𝑛𝑛𝑙𝑙(𝜃𝜃|𝐼𝐼, 𝑧𝑧, 𝑡𝑡) = �𝐼𝐼𝑖𝑖
𝑦𝑦𝑦𝑦

𝑛𝑛

𝑖𝑖=1

𝑙𝑙𝑛𝑛(𝑊𝑊𝑃𝑃(𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑖𝑖)) + 𝐼𝐼𝑖𝑖
𝑦𝑦𝑛𝑛 𝑙𝑙𝑛𝑛(𝑊𝑊𝑃𝑃(𝑦𝑦𝑖𝑖 ,𝑛𝑛𝑖𝑖)) + 𝐼𝐼𝑖𝑖

𝑛𝑛𝑦𝑦 𝑙𝑙𝑛𝑛(𝑊𝑊𝑃𝑃(𝑛𝑛𝑖𝑖 ,𝑦𝑦𝑖𝑖))

+ 𝐼𝐼𝑖𝑖𝑛𝑛𝑛𝑛 𝑙𝑙𝑛𝑛(𝑊𝑊𝑃𝑃(𝑛𝑛𝑖𝑖 ,𝑛𝑛𝑖𝑖))⋯ (3) 

ifying some probability distributions for the random disturbance term and maximizing equation 

(3), the maximum likelihood estimate, 𝐺𝐺� , is obtained; then the calculation of  ∫ �1− 𝐺𝐺��𝑑𝑑𝑡𝑡  

provides the mean WTP, since 1 − 𝐺𝐺(∙) is the survival function of WTP. In order to make a 

consistent estimation of the survival function of WTP, however, it is necessary to correctly specify 

the WTP function of equation (1) and the probability distribution of the random disturbance term. 

Nevertheless, it is difficult to correctly specify the WTP function and probability distribution of 

the random disturbance term because we cannot know them in advance. For this reason, there is 

no guarantee that a consistent estimation of the survival function can be made; therefore, there is a 
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risk of estimating the mean WTP in error. To avoid this specification error, Carson et al. (1994) 

and McFadden (1994) applied the self-consistency algorithm ( Turnbull, 1974, 1976 ) to a 

double-bounded dichotomous choice CV, to estimate the survival function of WTP in a 

non-parametrical model. This non-parametric estimator, however, cannot be solved explicitly and 

it requires cumbersome numerical calculation. Thus, as mentioned in Section 1, the practical 

application of this model is limited. In addition, a consistent estimation is made only at each bid 

point. Hence, this estimator is nothing more than the lower bound consistent estimator of the 

mean WTP. 

As mentioned above, the method adopted to estimate the mean WTP in the existing model is to 

estimate the survival function of WTP and then integrate it. Watanabe and Asano (forthcoming) 

instead developed a model to make a consistent estimation of the mean WTP itself without 

estimating the survival function of WTP. This point significantly differentiates the linear 

projection model from the existing models. This paper attempts to extend this idea to 

double-bounded dichotomous choice CV. 

 

3. Linear projection model of single-bounded dichotomous choice CV 

3.1 Mean WTP 

A bid for certain environmental quality improvement at the 𝑘𝑘th stage is defined as 𝑡𝑡𝑘𝑘 . The 

indicator function is defined so that 𝑦𝑦𝑘𝑘 = 1 if the respondent says “pay (yes),” and 𝑦𝑦𝑘𝑘 = 0 if the 

respondent says “do not pay (no)” when 𝑡𝑡𝑘𝑘  is provided. The survival function of the WTP, which 

is distributed in the range of [0,𝐵𝐵], is defined as 𝑆𝑆(𝑡𝑡) ≡ 𝑊𝑊𝑃𝑃(𝑊𝑊𝑊𝑊𝑊𝑊 ≥ 𝑡𝑡) . At end points, 𝑆𝑆(0) ≡

1 and  𝑆𝑆(𝐵𝐵) ≡ 0 are assumed. Here, from its definition,  𝑦𝑦𝑘𝑘  is the Bernoulli random variable; 

hence, the conditional expectation of 𝑦𝑦𝑘𝑘  with respect to 𝑡𝑡𝑘𝑘  is  𝐸𝐸(𝑦𝑦𝑘𝑘 |𝑡𝑡𝑘𝑘) = 𝑊𝑊𝑃𝑃(𝑦𝑦𝑘𝑘 = 1|𝑡𝑡𝑘𝑘). In 

addition,  𝑦𝑦𝑘𝑘 = 1  for bid 𝑡𝑡𝑘𝑘  is equivalent to 𝑊𝑊𝑊𝑊𝑊𝑊 ≥ 𝑡𝑡𝑘𝑘  and hence, 𝑊𝑊𝑃𝑃(𝑦𝑦𝑘𝑘 = 1|𝑡𝑡𝑘𝑘) =

𝑊𝑊𝑃𝑃(𝑊𝑊𝑊𝑊𝑊𝑊 ≥ 𝑡𝑡𝑘𝑘) = 𝑆𝑆(𝑡𝑡𝑘𝑘). The following equation is thus obtained.  

𝐸𝐸(𝑦𝑦𝑘𝑘 |𝑡𝑡𝑘𝑘) = 𝑆𝑆(𝑡𝑡𝑘𝑘)⋯ (4) 
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From equation (4), the mean WTP is calculated as a conditional expectation of 𝑦𝑦 with respect to 𝑡𝑡  

as shown below: 

𝐸𝐸(𝑊𝑊𝑊𝑊𝑊𝑊) = � 𝑆𝑆(𝑡𝑡)𝑑𝑑𝑡𝑡
𝐵𝐵

0
= � 𝐸𝐸(𝑦𝑦|𝑡𝑡)𝑑𝑑𝑡𝑡

𝐵𝐵

0
⋯ (5) 

 

3.2 Estimation model 

 In the single-bounded linear projection model, first consider the following linear projection of 

𝑦𝑦1/𝑓𝑓1(𝑡𝑡1) on 𝑒𝑒1 ≡ (1, 𝑡𝑡1)′:3

Here,  𝛽𝛽1 ≡ (𝛽𝛽11,𝛽𝛽12)′  is the projection parameter vector,  𝑣𝑣1 is the projection error, and 𝑓𝑓1(𝑡𝑡1) 

is the density function of bid 𝑡𝑡1 . In addition, it is assumed that bid 𝑡𝑡1  follows continuous 

distribution in [0,𝐵𝐵] , and 𝑓𝑓1(𝑡𝑡1) ≠ 0  in the range. By changing equation (6) we obtain 

 𝐸𝐸(𝑦𝑦1|𝑡𝑡1) = 𝑒𝑒1
′ 𝛽𝛽1𝑓𝑓1(𝑡𝑡1) + 𝐸𝐸(𝑣𝑣1|𝑡𝑡1)𝑓𝑓1(𝑡𝑡1) and 𝐸𝐸(𝑊𝑊𝑊𝑊𝑊𝑊) is calculated as the following:

 

𝑙𝑙𝑊𝑊 �
𝑦𝑦1

𝑓𝑓1(𝑡𝑡1)
|𝑒𝑒1� = 𝑒𝑒1

′ 𝛽𝛽1 ⇔
𝑦𝑦1

𝑓𝑓1(𝑡𝑡1) = 𝑒𝑒1
′ 𝛽𝛽1 + 𝑣𝑣1,𝐸𝐸(𝑒𝑒1𝑣𝑣1) = 0 ⋯ (6) 

4

Here,  �̂�𝛽1 ≡ (�̂�𝛽11, �̂�𝛽12)′ is a consistent estimate of 𝛽𝛽1. This consistent estimate can be calculated 

  

𝐸𝐸(𝑊𝑊𝑊𝑊𝑊𝑊) = � (𝛽𝛽11 + 𝛽𝛽12𝑡𝑡)𝑓𝑓1(𝑡𝑡)𝑑𝑑𝑡𝑡
𝐵𝐵

0
+ � 𝐸𝐸(𝑣𝑣1|𝑡𝑡)𝑓𝑓1(𝑡𝑡)𝑑𝑑𝑡𝑡

𝐵𝐵

0
= � (𝛽𝛽11 + 𝛽𝛽12𝑡𝑡)𝑓𝑓1(𝑡𝑡)𝑑𝑑𝑡𝑡

𝐵𝐵

0
⋯ (7) 

 In addition, since ∫ (𝛽𝛽11 + 𝛽𝛽12𝑡𝑡)𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡𝐵𝐵
0 = 𝐸𝐸�𝑒𝑒1

′ 𝛽𝛽1� = 𝐸𝐸 � 𝑦𝑦1
𝑓𝑓1(𝑡𝑡1)� , the mean WTP can be also 

represented in the following equation:  

𝐸𝐸(𝑊𝑊𝑊𝑊𝑊𝑊) = 𝐸𝐸 �
𝑦𝑦1

𝑓𝑓1(𝑡𝑡1)
�⋯ (8) 

Estimators for equation (7) and equation (8) are as follows: 

𝐸𝐸�(𝑊𝑊𝑊𝑊𝑊𝑊) = � ��̂�𝛽11 + �̂�𝛽12𝑡𝑡�𝑓𝑓1(𝑡𝑡)𝑑𝑑𝑡𝑡
𝐵𝐵

0
⋯ (9) 

𝐸𝐸�(𝑊𝑊𝑊𝑊𝑊𝑊) = 𝑛𝑛−1 �
𝑦𝑦1𝑖𝑖

𝑓𝑓1(𝑡𝑡1𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

⋯ (10) 

                                                        
2 For a linear projection, see Wooldridge (2002) pp. 24–27. 
4 From the definition of linear project, ∫ 𝐸𝐸(𝑣𝑣1|𝑡𝑡)𝑓𝑓1(𝑡𝑡)𝑑𝑑𝑡𝑡𝐵𝐵

0 = 𝐸𝐸(𝑣𝑣1) = 0. 
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by ordinary least squares (OLS), which regresses 𝑦𝑦1/𝑓𝑓1(𝑡𝑡1) on 𝑒𝑒1, because, from the definition of 

𝛽𝛽1, 𝛽𝛽1  is the linear projection parameter vector. In addition, equation (7) is continuous with 

respect to 𝛽𝛽1. Hence, by substituting this consistent estimate it is possible to make a consistent 

estimation of 𝐸𝐸(𝑊𝑊𝑊𝑊𝑊𝑊)  based on equation (9). The estimation of the mean WTP based on 

equation (10) is even simpler. It is possible to make a consistent estimation as a sample average of 

𝑦𝑦1𝑖𝑖  weighted by the density function without regression.5

3.3 Problems of extending to the double-bounded dichotomous choice CV 

 

Furthermore, if the first bid follows uniform continuous distribution in the range of [0,𝐵𝐵], then 

equations (9) and (10) are as follows:  

𝐸𝐸�(𝑊𝑊𝑊𝑊𝑊𝑊) = �̂�𝛽11 +
𝐵𝐵
2
�̂�𝛽12 ⋯ (11) 

𝐸𝐸�(𝑊𝑊𝑊𝑊𝑊𝑊) = 𝐵𝐵𝑦𝑦�  ⋯ (12) 

Here,  𝑦𝑦� ≡ 𝑛𝑛−1 ∑ 𝑦𝑦1𝑖𝑖
𝑛𝑛
𝑖𝑖=1  is the percentage of respondents who say “yes” for all bids. In particular, 

equation (12) makes it possible to estimate the mean WTP as “maximum bid” × “the percentage 

of respondents who say ‘yes’.” Thus, calculation becomes so simple that an estimate can be 

obtained even by manual calculation. 

 

When a linear projection model is applied to a double-bounded dichotomous choice CV, a bid 

provided for a respondent at the second stage depends upon an answer at the first stage. For this 

reason, the density function of the bid at the second stage cannot be known in advance. For this 

reason, it is not possible to apply a single-bound linear projection model to the double-bounded 

case without any modification. An Intuitive solution is used to estimate the density of a bid at the 

second stage from data. As shown in the Appendix, the use of kernel density estimation makes it 

possible to apply a double-bounded dichotomous choice linear projection model. The 

methodological simplicity, however, is lost due to the need for density estimation. 

                                                        
4 𝑦𝑦1𝑖𝑖/𝑓𝑓1(𝑡𝑡1𝑖𝑖) is independent, identically distributed. Hence, the weak law of large numbers implies 
that it is a consistent estimate of the mean WTP. 
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The second problem to be considered in extending to a double-bounded CV is that an answer at 

the second stage is not independent of an answer of the first stage. It is therefore not possible to 

apply the law of large numbers in the same way as in Section 3.2. Thus, consistency of the mean 

WTP cannot be guaranteed. 

In order to deal with the two problems described above, a method that consistently estimates 

the mean WTP is developed in the next section. 

 

4. Extension to double-bounded CV 

4.1 Density of the second bid 

The first, second lower, and second higher bid are notated as 𝑡𝑡1, 𝑡𝑡2𝑙𝑙, and 𝑡𝑡2𝑈𝑈, respectively. If a 

respondent says “yes” at the first stage,  𝑡𝑡2𝑈𝑈 is provided at the second stage. If a respondent says 

“no” at the first stage,  𝑡𝑡2𝑙𝑙 is provided at the second stage. Thus, an actual bid provided for a 

respondent is either 𝑡𝑡2𝑙𝑙 or 𝑡𝑡2𝑈𝑈, meaning that the answer of the second bid is dependent on the 

answer of the first bid. For this reason, even if the design is constructed so that the second bids, 

 𝑡𝑡2𝑙𝑙  and 𝑡𝑡2𝑈𝑈 , follow uniform distribution, the second bid provided for a respondent does not 

actually follow uniform distribution, making it impossible to control distribution of the second 

bid. It is the issue that is pointed out in the previous section. 

Changing the view, consider that with no regard to an answer of “yes” or “no” at the first stage, 

both of the bid, 𝑡𝑡2𝑙𝑙and 𝑡𝑡2𝑈𝑈, are virtually provided at the second stage. This explains that 𝑡𝑡2𝑈𝑈 is 

actually provided at the second stage for a respondent who says “yes” at the first stage, but at the 

same time,  𝑡𝑡2𝑙𝑙  is also virtually provided at the second stage. Though a respondent does not 

directly answer to 𝑡𝑡2𝑙𝑙, it is possible to assume logically that a respondent will say “yes” for 𝑡𝑡2𝑙𝑙 as 

well, because  𝑡𝑡2𝑙𝑙 is lower than 𝑡𝑡1 due to the design of the bid. On the other hand,  𝑡𝑡2𝑙𝑙 is actually 

provided for a respondent who says “no” at the first stage. Similarly, considering that 𝑡𝑡2𝑈𝑈 is also 

provided virtually, it allows us to assume logically that the answer to 𝑡𝑡2𝑈𝑈 will be “no”. This idea 

makes it possible to totally control the probability distribution of 𝑡𝑡2𝑙𝑙 and 𝑡𝑡2𝑈𝑈 at the second stage 
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and extend a linear projection model to double-bounded case without density estimation. Now 

that it is possible to totally control the second bid by following the logic mentioned above, a linear 

projection model for double-bounded dichotomous choice will be developed. 

 

4.2 Linear projection model for double-bounded dichotomous choice 

An intuitive idea for the extension of a linear projection model to the double-bounded case is to 

take linear projection separately at the first and second stage. The indicator function 𝑦𝑦1,𝑦𝑦2𝑙𝑙 ,𝑦𝑦2𝑈𝑈  

is defined as the following; if a respondent says “yes” for 𝑡𝑡1, 𝑡𝑡2𝑙𝑙, 𝑡𝑡2𝑈𝑈, it is 1; if a respondent says 

“no,” it is 0. Also, the density of 𝑡𝑡1, 𝑡𝑡2𝑙𝑙, 𝑡𝑡2𝑈𝑈 is defined as 𝑓𝑓1,𝑓𝑓2𝑙𝑙 ,𝑓𝑓2𝑈𝑈 . Next, we consider the 

following linear projection. 

𝑙𝑙𝑊𝑊(𝑧𝑧|𝑋𝑋) = 𝑋𝑋𝛽𝛽 ⇔𝑧𝑧 = 𝑋𝑋𝛽𝛽 + 𝑣𝑣,𝐸𝐸�𝑋𝑋′𝑣𝑣� = 0⋯ (13) 

𝑧𝑧 ≡

⎝

⎜
⎜
⎛

𝑦𝑦1

𝑓𝑓1
𝑦𝑦2𝑙𝑙

𝑓𝑓2𝑙𝑙
𝑦𝑦2𝑈𝑈

𝑓𝑓2𝑈𝑈⎠

⎟
⎟
⎞

,  𝑋𝑋 ≡ �
𝑒𝑒1
′ 0 0

0 𝑒𝑒2𝑙𝑙
′ 0

0 0 𝑒𝑒2𝑈𝑈
′
� , 𝑒𝑒𝑘𝑘 ≡ �1

𝑡𝑡𝑘𝑘
� ,𝑘𝑘 = 1,2𝑙𝑙, 2𝑈𝑈   

where  𝛽𝛽 ≡ �
𝛽𝛽1
𝛽𝛽2𝑙𝑙
𝛽𝛽2𝑈𝑈

� ,𝛽𝛽𝑘𝑘 ≡ �𝛽𝛽𝑘𝑘1
𝛽𝛽𝑘𝑘2

�  , and  𝑣𝑣 ≡ �
𝑣𝑣1
𝑣𝑣2𝑙𝑙
𝑣𝑣2𝑈𝑈

�  are projection parameter vector and 

projection error, respectively. As is the case with equations (7) and (8), it is possible to calculate 

the mean WTP using the projection vector of the first stage and that of the second stage. 

𝐸𝐸(𝑊𝑊𝑊𝑊𝑊𝑊) = � (𝛽𝛽𝑘𝑘1 + 𝛽𝛽𝑘𝑘2𝑡𝑡)𝑓𝑓𝑘𝑘(𝑡𝑡)𝑑𝑑𝑡𝑡
𝐵𝐵

0
+� 𝐸𝐸(𝑣𝑣𝑘𝑘 |𝑡𝑡)𝑓𝑓𝑘𝑘(𝑡𝑡)𝑑𝑑𝑡𝑡

𝐵𝐵

0
= � (𝛽𝛽𝑘𝑘1 + 𝛽𝛽𝑘𝑘2𝑡𝑡)𝑓𝑓𝑘𝑘(𝑡𝑡)𝑑𝑑𝑡𝑡

𝐵𝐵

0
⋯ (14) 

𝐸𝐸(𝑊𝑊𝑊𝑊𝑊𝑊) = 𝐸𝐸�𝑒𝑒𝑘𝑘′ 𝛽𝛽𝑘𝑘� = 𝐸𝐸 �
𝑦𝑦𝑘𝑘
𝑓𝑓𝑘𝑘
�⋯ (15) 

To consider estimation, we add 𝑖𝑖  to the subscript and rewrite equation (13):  𝑧𝑧𝑖𝑖 = 𝑋𝑋𝑖𝑖𝛽𝛽 +

𝑣𝑣𝑖𝑖 ,𝐸𝐸�𝑋𝑋𝑖𝑖′𝑣𝑣𝑖𝑖� = 0 . Since   𝐸𝐸(𝑋𝑋𝑖𝑖′𝑋𝑋𝑖𝑖) is a full column rank,  𝛽𝛽 = 𝐸𝐸�𝑋𝑋𝑖𝑖′𝑋𝑋𝑖𝑖�
−1
𝐸𝐸�𝑋𝑋𝑖𝑖′𝑧𝑧𝑖𝑖� is obtained. 

According to the analog principle,  �̂�𝛽 = �𝑛𝑛−1 ∑ 𝑋𝑋𝑖𝑖′𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 �

−1
�𝑛𝑛−1 ∑ 𝑋𝑋𝑖𝑖′𝑧𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=1 � is considered as this 
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natural estimator. 6 Note that each element is an ordinary least squares estimator (OLSE), which 

regress 𝑦𝑦𝑘𝑘
𝑓𝑓𝑘𝑘

 on 𝑒𝑒𝑘𝑘  at each stage, based on the structure of 𝑋𝑋𝑖𝑖  and 𝑧𝑧𝑖𝑖 . Thus, it is possible to make an 

estimation by performing simple regressions separately at each stage. It should be noted here that 

because  𝑖𝑖  is randomly drawn,  𝑖𝑖 is independent, identically distributed, even though the first and 

second stage are not independent. 7  Hence,  𝑒𝑒𝑙𝑙𝑖𝑖𝑝𝑝 �̂�𝛽 = 𝛽𝛽   is obtained. 8

Following the same procedure, consider 𝛾𝛾� = �𝑛𝑛−1 ∑ 𝑋𝑋𝑖𝑖′𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 �

−1
�𝑛𝑛−1 ∑ 𝑋𝑋𝑖𝑖′𝑧𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=1 �  as a natural 

estimator of  𝛾𝛾 = 𝐸𝐸�𝑋𝑋𝑖𝑖′𝑋𝑋𝑖𝑖�
−1
𝐸𝐸(𝑋𝑋𝑖𝑖′𝑧𝑧𝑖𝑖). At this point,  𝑒𝑒𝑙𝑙𝑖𝑖𝑝𝑝 𝛾𝛾� = 𝛾𝛾  is derived from the weak law of 

 Consequently, the 

following consistent estimators of the mean WTP are derived by substituting these consistent 

estimates to equation (14) or by taking a sample average for equation (15): 

𝐸𝐸�(𝑊𝑊𝑊𝑊𝑊𝑊) =
1
3
�� ��̂�𝛽𝑘𝑘1 + �̂�𝛽𝑘𝑘2𝑡𝑡�

𝐵𝐵

0
𝑓𝑓𝑘𝑘(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑘𝑘

⋯ (16) 

𝐸𝐸�(𝑊𝑊𝑊𝑊𝑊𝑊) =
1
3
�

1
𝑛𝑛
�

𝑦𝑦1𝑖𝑖

𝑓𝑓1(𝑡𝑡1𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

+
1
𝑛𝑛
�

𝑦𝑦2𝑙𝑙𝑖𝑖

𝑓𝑓2𝑙𝑙(𝑡𝑡2𝑙𝑙𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

+
1
𝑛𝑛
�

𝑦𝑦2𝑈𝑈𝑖𝑖

𝑓𝑓2𝑈𝑈(𝑡𝑡2𝑈𝑈𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

� =
1

3𝑛𝑛
��

𝑦𝑦𝑘𝑘𝑖𝑖
𝑓𝑓𝑘𝑘(𝑡𝑡𝑘𝑘𝑖𝑖)

𝑛𝑛

𝑖𝑖=1𝑘𝑘

⋯ (17) 

It is possible to estimate the mean WTP estimator of equation (17) as the sample average of 𝑦𝑦𝑘𝑘𝑖𝑖  

weighted by the density function without regression.  

In the explanation above, the linear projection was taken separately at each stage. Yet, it is also 

possible to describe  𝑋𝑋 ≡ �
𝑒𝑒1
′

𝑒𝑒2𝑙𝑙
′

𝑒𝑒2𝑈𝑈
′
� , 𝛾𝛾 ≡ �

𝛾𝛾1
𝛾𝛾2
� , 𝑢𝑢 ≡ �

𝑢𝑢1
𝑢𝑢2𝑙𝑙
𝑢𝑢2𝑈𝑈

� , and change the way to take the 

following projection:  

𝑧𝑧 = 𝑋𝑋𝛾𝛾 + 𝑢𝑢,𝐸𝐸(𝑋𝑋′𝑢𝑢) = 0⋯ (18) 

                                                        
5 This looks like a seemingly unrelated regression (SUR). In the case of SUR, however,  
homoskedasticity is generally assumed for the error term (e.g., Hayashi, 2000, pp. 274–286). No 
assumption is applied to projection error here other than equation (13). Thus, this is not notated as 
SUR. 
6 The non-parametric model assumes that answers at the first and second stage are independent. In 
reality, however, these are obviously dependent. 
7 �̂�𝛽 = 𝛽𝛽 + �𝑛𝑛−1 ∑ 𝑋𝑋𝑖𝑖′𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1 �−1�𝑛𝑛−1 ∑ 𝑋𝑋𝑖𝑖′𝑣𝑣𝑖𝑖𝑛𝑛
𝑖𝑖=1 �. Since 𝑖𝑖 is independent, identically distributed,  

 𝑒𝑒𝑙𝑙𝑖𝑖𝑝𝑝 �̂�𝛽 = 𝛽𝛽  from the weak law of large numbers and the definition of linear projection. 
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large numbers and the definition of linear projection.  𝛾𝛾� is the pooled ordinary least squares 

estimator (POLSE), which can be obtained through the simple regression of 𝑦𝑦𝑘𝑘/𝑓𝑓𝑘𝑘  and 𝑒𝑒𝑘𝑘  pooled 

at each stage. Using this estimates, 𝛾𝛾�, the following the mean WTP estimator is obtained. 

𝐸𝐸�(𝑊𝑊𝑊𝑊𝑊𝑊) =
1
3
�� (𝛾𝛾�1 + 𝛾𝛾�2𝑡𝑡)

𝐵𝐵

0
𝑓𝑓𝑘𝑘(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑘𝑘

⋯ (19) 

In addition, even if the linear projection described in equation (18) is taken, there is no change in 

the mean WTP estimator based on weighted average corresponding to equation (17). In addition, 

if a bid follows uniform distribution, the mean WTP estimator corresponding to equations (16), 

(17), and (19) can be represented by extremely simple equations, such as (16)’, (17)’, and (19)’ as 

shown below. 

𝐸𝐸�(𝑊𝑊𝑊𝑊𝑊𝑊) =
1
3
���̂�𝛽𝑘𝑘1 +

𝐵𝐵
2
�̂�𝛽𝑘𝑘2�

𝑘𝑘

⋯ (16)′ 

𝐸𝐸�(𝑊𝑊𝑊𝑊𝑊𝑊) = 𝐵𝐵𝑦𝑦 � ,   𝑦𝑦� ≡ �
1

3𝑛𝑛
��𝑦𝑦𝑘𝑘𝑖𝑖

𝑛𝑛

𝑖𝑖=1𝑘𝑘

�  ⋯ (17)′ 

𝐸𝐸�(𝑊𝑊𝑊𝑊𝑊𝑊) = 𝛾𝛾�1 +
𝐵𝐵
2
𝛾𝛾�2 ⋯ (19)′ 

Equation (17)’,  𝑦𝑦� ≡ � 1
3𝑛𝑛
∑ ∑ 𝑦𝑦𝑘𝑘𝑖𝑖𝑛𝑛

𝑖𝑖=1𝑘𝑘 � is the percentage of respondents who say “yes” in all 

stages. Hence, the mean WTP is consistently estimated by “maximum bid” × “percentage of 

respondents who say yes.” Thus, it is easier to estimate the mean WTP than any other parametric 

or non-parametric models. 

Table 1 and Table 2 show the summary of the mean WTP estimator of a linear projection model 

of the double-bounded dichotomous choice CV. 
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Table 1 Mean WTP estimator of a double-bounded linear projection model 

sample average type: 

 equation (17) 

regression type: 

equation (16) 

regression POLS type: 

 equation (19) 

1
3𝑛𝑛
∑ ∑ 𝑦𝑦𝑘𝑘𝑖𝑖

𝑓𝑓𝑘𝑘(𝑡𝑡𝑘𝑘𝑖𝑖 )
𝑛𝑛
𝑖𝑖=1𝑘𝑘   1

3
∑ ∫ ��̂�𝛽𝑘𝑘1 + �̂�𝛽𝑘𝑘2𝑡𝑡�

𝐵𝐵
0 𝑓𝑓𝑘𝑘(𝑡𝑡)𝑑𝑑𝑡𝑡𝑘𝑘   1

3
∑ ∫ (𝛾𝛾�1 + 𝛾𝛾�2𝑡𝑡)

𝐵𝐵
0 𝑓𝑓𝑘𝑘(𝑡𝑡)𝑑𝑑𝑡𝑡𝑘𝑘   

Note 1)  𝑘𝑘 = 1,2𝑈𝑈, 2𝑙𝑙  defines the first, second lower, and second higher bid, respectively. 

Note 2)  �̂�𝛽𝑘𝑘1 and �̂�𝛽𝑘𝑘2 are OLSE obtained through simple regression performed separately at each 

stage.  𝛾𝛾�1 and 𝛾𝛾�2 are POLSE obtained through pooled simple regression. 

 

Table 2 Mean WTP estimator of a double-bounded linear projection model 

(if a bid at each stage follows uniform distribution) 

sample average type: 

 equation (17)’ 

regression type: 

 equation (16)’ 

regression POLS type: 

 equation (19)’  

𝐵𝐵𝑦𝑦 �  1
3
∑ ��̂�𝛽𝑘𝑘1 + 𝐵𝐵

2
�̂�𝛽𝑘𝑘2�𝑘𝑘   𝛾𝛾�1 +

𝐵𝐵
2
𝛾𝛾�2 

Note 1)  𝑘𝑘 = 1,2𝑈𝑈, 2𝑙𝑙 defines the first, second lower, and second higher bid. 

Note 2)  �̂�𝛽𝑘𝑘1 and �̂�𝛽𝑘𝑘2 are OLSE obtained through simple regression performed separately at each 

stage.  𝛾𝛾�1 and 𝛾𝛾�2 are POLSE obtained through pooled simple regression. 

Note 3)  𝑦𝑦� ≡ � 1
3𝑛𝑛
∑ ∑ 𝑦𝑦𝑘𝑘𝑖𝑖𝑛𝑛

𝑖𝑖=1𝑘𝑘 � is the percentage of respondents who say “yes” in all stages. 

 

5. Monte Carlo simulations 

Theoretically, a bid is distributed within the support of population WTP and the density must 

not be 0 in the area. In actual application, however, a bid is designed to follow discrete uniform 

distribution. Hence, performance of the mean WTP estimator is examined when a bid is in a 

discrete uniform distribution. We also compare the linear projection model with a parametric 
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model and a nonparametric model: the kernel regression model.9

Upon estimation, it should be noted that the density of a bid, 𝑓𝑓𝑘𝑘(𝑡𝑡𝑘𝑘), must be 1
𝐵𝐵

 and not 

1
Number  of  bid  levels

 . This is because equation (14) cannot be formed unless  𝑓𝑓𝑘𝑘(𝑡𝑡𝑘𝑘) is 1
𝐵𝐵

.

 

 It is assumed that the population WTP follows lognormal distribution, ln(𝑊𝑊𝑊𝑊𝑊𝑊) ∼ 𝑁𝑁(3,1). 

Here, the true mean WTP is 33.12 and the standard deviation is 43.41. Pairs of bids, 𝑡𝑡1, 𝑡𝑡2𝑙𝑙, and 

𝑡𝑡2𝑈𝑈 are designed to follow discrete uniform distribution at each stage, as shown in Table 3 and 

Table 4. If the number of bid levels at the first stage is 5, one of the pairs between patterns 1 and 5 

is provided with equal probability (Table 3). On the other hand, if it is 10, one of the pairs between 

patterns 1 and 10 is provided with equal probability (Table 4). In addition, the number of samples 

is 300 and the number of Monte Carlo simulation trials is 3000. 

10

The results of the Monte Carlo simulations are described in Table 5 and Table 6. If the number 

of bid levels at the first stage is 10, the mean WTP is estimated accurately enough, as shown in 

Table 6. Moreover, the linear projection model is slightly more efficient than both the parametric 

model, which adopts the maximum-likelihood method, and the non-parametric model. On the 

other hand, if the number of bid levels at the first stage is 5, the performance of a sample average 

type estimator (equation (17)’) is a little bit poor. It is, therefore, necessary to be careful to set the 

number of bid levels when using a linear projection model.

 

11

                                                        
9 In the kernel regression model, the kernel function is Gaussian and the bandwidth is a plug-in 
estimate. 
10 Considering that a bid is distributed (virtually) based on continuous uniform distribution in 
population and a part of the bid is drawn randomly, this point is natural. This idea would enable us to 
understand that a bid must be distributed as comprehensively as possible in order to reproduce the 
characteristics of population in a sample. 
11 The influence of designing the number of bid levels and the maximum bid on mean WTP estimates 
is analyzed in Watanabe and Asano (forthcoming) at length. 

 For example, as is the case with the 

Monte Carlo simulation settings, if the WTP ranges from 0 yen to 200 euro, it is required to set the 

number of bid levels at approximately 10. In other words, it is necessary to distribute the bid 

comprehensively in the range of 0 yen to 200 euro, in increments of approximately 20 euro. Such 

a number of bid levels, however, is not very large, and it would therefore be fair to say that the 
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linear projection model is a realistic approach. 

 

6. Conclusion 

This paper has extended the linear projection model of the dichotomous choice CV developed 

by Watanabe and Asano (forthcoming) to a double-bounded model. It has shown that as long as 

the bid follows uniform distribution, it is possible to make a consistent estimation of the mean 

WTP just by calculating the “maximum bid” × “percentage of respondents who say “yes”.” This 

model eliminates the risk in specification error. It also makes it easier than any other existing 

parametric or non-parametric models do to make a consistent estimation of the mean WTP. In 

order to ensure the transparency of the evaluation and improve its reliability, it is better to 

estimate the mean WTP based on as simple a method as possible. With the method developed in 

this paper, there is little room for arbitrariness in estimation at a practical stage. A bid, however, 

must be prudently designed. It is necessary to provide a bid comprehensively in the support of 

WTP distribution based on as many levels as possible. Nevertheless, based on the Monte Carlo 

simulation, it has been proven that it is possible to estimate the mean WTP accurately enough, 

even if the number of bid levels is not very large. It would be fair to say that the application of a 

linear projection model is realistic. 

Finally, we will briefly explain the limitations of a linear projection model. First, only the mean 

WTP can be estimated with a linear projection model; it is not possible to estimate other 

representative values such as median. Yet, considering that one of the main purposes of 

contingent valuation is to apply it to cost-benefit analysis based on the potential compensation 

principle, it would be fair to say that the estimation of the mean WTP is sufficient in such a case. 

In addition, the model suggested in this paper cannot include any socioeconomic variables that 

influence the WTP. We expect that this extension will be achieved in the future. 
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Appendix: Linear projection model that adopts density estimation  

Here, we show that the mean WTP is consistently estimated by the linear projection model by 

applying kernel estimation to make a consistent estimation of the density of the second bid a 

respondent faces actually. In kernel estimation, the consistency condition is not strong. The 

condition to make a consistent estimation by the kernel density estimation is as follows. 

As the number of samples increases, the bandwidth becomes narrower, although the degree of 

decrease of the bandwidth must be smaller than the degree of increase of the number of samples: 

if  𝑛𝑛 → ∞ ,  ℎ(𝑛𝑛) → 0  and  𝑛𝑛ℎ(𝑛𝑛) → ∞ , where 𝑛𝑛  is the number of samples and  ℎ(𝑛𝑛)  is 

bandwidth.12 Notating 𝑧𝑧𝑖𝑖  as �̂�𝑧𝑖𝑖 , when an estimate obtained through kernel density estimation is 

used, I will show that if �̂�𝑧𝑖𝑖
𝑒𝑒
→ 𝑧𝑧𝑖𝑖  (𝑖𝑖 = 1,2,⋯𝑛𝑛) ,  �̂�𝛽 = �𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑒𝑒𝑖𝑖′�
−1(𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖�̂�𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=1 )

𝑒𝑒
→𝐸𝐸�𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖′�

−1
𝐸𝐸(𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖) = 𝛽𝛽.13

The contrapositive of this is |𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖�̂�𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1 − 𝐸𝐸(𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖)| > 𝜖𝜖 ⇒  |𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖�̂�𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=1 −

𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1 | > 𝜖𝜖

2
  or |𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=1 − 𝐸𝐸(𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖)| > 𝜖𝜖
2
. Therefore, {|𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖�̂�𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=1 − 𝐸𝐸(𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖)| >

ϵ} ⊂ �|𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖�̂�𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1 − 𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=1 | > 𝜖𝜖
2
�   ∪  �|𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=1 − 𝐸𝐸(𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖)| > 𝜖𝜖
2
� .  Hence, 

 

�̂�𝑧𝑖𝑖
𝑒𝑒
→ 𝑧𝑧𝑖𝑖  is given. Hence, by Slutsky’s theorem,  

∀𝜖𝜖∃𝑁𝑁1:𝑛𝑛 ≥ 𝑁𝑁1 ⇒𝑊𝑊𝑃𝑃 ��𝑛𝑛−1 � 𝑒𝑒𝑖𝑖�̂�𝑧𝑖𝑖
𝑛𝑛

𝑖𝑖=1
− 𝑛𝑛−1 � 𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖

𝑛𝑛

𝑖𝑖=1
� >

𝜖𝜖
2
� = 0⋯ (20) 

In addition, assuming that any appropriate moment exists, by the weak law of large numbers, 

∀𝜖𝜖∃𝑁𝑁2:𝑛𝑛 ≥ 𝑁𝑁2 ⇒𝑊𝑊𝑃𝑃 ��𝑛𝑛−1 � 𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖
𝑛𝑛

𝑖𝑖=1
− 𝐸𝐸(𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖)� >

𝜖𝜖
2
� = 0⋯ (21) 

Here,  |𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖�̂�𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1 − 𝐸𝐸(𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖)| ≤ |𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖�̂�𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=1 − 𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1 | + |𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=1 − 𝐸𝐸(𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖)| 

is given. Hence, if |𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖�̂�𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1 − 𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=1 | ≤ 𝜖𝜖
2

 and |𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1 − 𝐸𝐸(𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖)| ≤ 𝜖𝜖

2
, 

 |𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖�̂�𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1 − 𝐸𝐸(𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖)| ≤ ϵ . 

                                                        
12 See Silverman (1986) pp. 70–74. 
13 Here, to avoid notational complications, I have focused on the regression case at each stage as 
shown in section 4.2. This, however, applies to other cases as well. In addition, an estimator of the 
sample mean type is trivial, so we have not proven it here. 



16 
 

 𝑊𝑊𝑃𝑃{|𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖�̂�𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1 − 𝐸𝐸(𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖)| > 𝜖𝜖}  ≤  Pr �|𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖�̂�𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=1 − 𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1 | > 𝜖𝜖

2
�  + 

𝑊𝑊𝑃𝑃 �|𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1 − 𝐸𝐸(𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖)| > 𝜖𝜖

2
�. Here, let 𝑁𝑁 ≡ 𝑝𝑝𝑚𝑚𝑒𝑒(𝑁𝑁1,𝑁𝑁2), by equations (20) and (21), 

 𝑛𝑛 ≥ 𝑁𝑁  ⇒  𝑊𝑊𝑃𝑃{|𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖�̂�𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1 − 𝐸𝐸(𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖)| > 𝜖𝜖 }  = 0 . Therefore, if �̂�𝑧𝑖𝑖

𝑒𝑒
→ 𝑧𝑧𝑖𝑖 , (𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖�̂�𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=1 )

𝑒𝑒
→𝐸𝐸(𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖). Hence, if �̂�𝑧𝑖𝑖

𝑒𝑒
→ 𝑧𝑧𝑖𝑖 ,  (𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖𝑒𝑒′𝑖𝑖𝑛𝑛

𝑖𝑖=1 )−1 (𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖�̂�𝑧𝑖𝑖𝑛𝑛
𝑖𝑖=1 )

𝑒𝑒
→𝐸𝐸(𝑒𝑒𝑖𝑖𝑒𝑒′𝑖𝑖)−1𝐸𝐸(𝑒𝑒𝑖𝑖𝑧𝑧𝑖𝑖) ,because 

 (𝑛𝑛−1 ∑ 𝑒𝑒𝑖𝑖𝑒𝑒′𝑖𝑖𝑛𝑛
𝑖𝑖=1 )−1 𝑒𝑒

→𝐸𝐸(𝑒𝑒𝑖𝑖𝑒𝑒′𝑖𝑖)−1. For this reason, even if the consistent estimate of the density of 

a bid at the second stage is used, this does not impair the consistency of �̂�𝛽. Hence, it is possible to 

make a consistent estimation of the mean WTP in a linear projection model using kernel 

estimation as well. 
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Table 3 Bid design -the number of bid levels at the first stage is 5- 

 

 

Table 4 Bid design -the number of bid levels at the first stage is 10- 

 

 

Table 5 Result of the Monte Carlo simulation  

-the number of bid levels at the first stage is 5- 

 

 Note) Population mean WTP is 33.12. 

 

 

 

pattern t1 t2L t2U
1 5 0 20
2 50 45 65
3 95 90 110
4 140 135 155
5 185 180 200

pattern t1 t2L t2U
1 5 0 20
2 25 20 40
3 45 40 60
4 65 60 80
5 85 80 100
6 105 100 120
7 125 120 140
8 145 140 160
9 165 160 180

10 185 180 200

standard deviation 10% tile 50% tile 90% tile
linear projection model
     sample average type  equation (17) 2.48 24.92 28.01 31.26
     regression type  equation(16) 3.12 29.18 33.00 37.16
     regression POLS type  equation(19) 2.78 30.35 33.82 37.38
parametric model 2.84 30.42 34.04 37.76
nonparametric model (kenrnel regression) 2.96 28.03 31.72 35.59



19 
 

 

 

Table 6 Result of the Monte Carlo simulation  

-the number of bid levels at the first stage is 10- 

 

Note) Population mean WTP is 33.12. 

standard deviation 10% tile 50% tile 90% tile
linear projection model
     sample average type  equation (17) 2.75 28.27 31.65 35.34
     regression type  equation(16) 2.89 30.01 33.61 37.51
     regression POLS type  equation(19) 2.70 27.26 30.62 34.26
parametric model 2.91 28.34 31.96 35.78
nonparametric model (kenrnel regression) 2.98 27.55 31.22 35.22
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