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Abstract

This note examines a noncooperative bargaining game model to
implement the “equal split” solution in a transferable utility coali-
tional form game provided by Hart and Mas-Colell (Econometrica 64,
1996). We first clarify the relationship between the equal split solution
and the Nash bargaining solution in a coalitional form game and ex-
tend the model to a nontransferable utility coalitional form game. We
then provide a sufficient condition for generating the Nash bargain-
ing solution configuration and the equal split solution as the limit of
the stationary subgame-perfect equilibrium payoffs of Hart and Mas-
Colell’s bargaining game when the probabilities of the breakdown of
negotiations converge to zero.
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1 Introduction

Hart and Mas-Colell (1996) provide a noncooperative bargaining model to
implement the “equal split” solution in the limit of stationary subgame-
perfect equilibria (SSPEs) as the cost of delay goes to zero!. The “equal
split” solution assigns the equal division v(S)/|S]| of the worth v(S) to the
member of a coalition S C N = {1,2,...,n} in a coalitional form game
(N,v) with transferable utility (a TU game). The solution is very interesting
because the solution for each coalition S is not sensitive to the worth of
subcoalitions. In addition, we note that the equal split solution is coincident
with the Nash bargaining solution payoff configuration (which is called, in
this paper, the subcoalition-consistent Nash bargaining solution) in the case
of a TU game. It is easy to see that the Nash bargaining solution of the
bargaining problem (v(S), rg), where the disagreement point rg is the origin,
becomes the equal division v(S)/|S].

In this note, we investigate Hart and Mas-Colell’s (1996) bargaining pro-
cedure. This bargaining procedure follows the tradition in setting up a se-
quential, alternating-offer, perfect information game such as in Binmore, et
al. (1986) and Rubinstein (1982). In each round, a player is selected as a
proposer with equal probability among all existing players. The proposer
can propose a feasible payoff vector for the active players. The requirement
for agreement is unanimity. The key feature of the bargaining procedure is
the rule regarding what happens if some player rejects the proposal. The
active players are faced with the risk of the breakdown of negotiations. Ne-

gotiations among the same members continue to the next round with almost

'Hart and Mas-Colell’s (1996) paper has been known as a provision of a noncooper-
ative bargaining model to generate the Shapley value. In Section 6 of their paper, they

generalized the bargaining procedure and obtained the equal split solution in equilibrium.



all probability, but, with a small probability, one of the responders drops
out (this is a partial breakdown) and the game goes to the next round with
the remaining players. We extend the bargaining situation to an n-person
coalitional form game with non-transferable utility (an NTU game).

We show that the bargaining procedure does not necessarily yield either
the subcoalition-consistent Nash bargaining solution or the equal split solu-
tion as an SSPE outcome in a general NTU game when the probability of
partial breakdown goes to zero. More concretely, we give an example in which
the subcoalition-consistent Nash bargaining solution is unable to be the limit
of SSPE payoff configurations in the noncooperative bargaining game as the
breakdown probability goes to zero. We then provide a sufficient condition
to implement the subcoalition-consistent Nash bargaining solution through
the noncooperative bargaining procedure. That condition of coalitional form
games is so called the Proportionality condition. The Proportionality condi-
tion is satisfied by a class of TU and hyperplane coalitional form games with
a common weight. We also show that in the bargaining over the division
of a pie, if all players have the same risk attitudes, then the correspond-
ing coalitional form game including NTU games satisfies the Proportionality
condition. The equal split solution is implemented by our noncooperative
bargaining game if the coalitional form game follows the Proportionality
condition and, in addition, the set of feasible payoff allocations in the two-
person bargaining is bilaterally symmetric. A TU game, considered in Hart
and Mas-Colell, is satisfying the both conditions by chance.

The related literatures concerning the noncooperative foundation of the
n-person Nash bargaining solution is as follows. To start with, Krishna
and Serrano (1996) provided a distinct noncooperative bargaining game to

yield the n-person Nash bargaining solution as an equilibrium agreement



when players are patient. However, their bargaining game did not require
unanimous agreement among players and considered only a pure bargaining
problem. As shown in Hart and Mas-Colell (1996), the Nash bargaining so-
lution is realized as the limit of SSPE payoff vectors of our noncooperative
bargaining game if the bargaining situation is described by a pure bargain-
ing problem. Okada (2005) also presented a noncooperative foundation of
the asymmetric Nash bargaining solution for a general cooperative game in
strategic form. His cooperative game in strategic form contains the bargain-
ing situations in this paper as special cases. However, while Okada’s (2005)
model allows players to form coalitions, our model does not allow strategies
of coalition formation for each player. As a result, the sufficient condition for
implementing the Nash bargaining solution in our model is quite different.
This paper is organized as follows. In Section 2, we provide the noncoop-
erative bargaining model and derive the basic equations that are satisfied by
the equilibrium payoff configuration in an NTU game. In Section 3, we in-
troduce the concept of the subcoalition-consistent Nash bargaining solution
and provide a simple example in which the subcoalition-consistent Nash bar-
gaining solution is not generated by our noncooperative bargaining game in
an NTU game. Section 4 presents a sufficient condition for implementing the
subgame-consistent Nash bargaining solution and the equal split solution.

The proof of the Theorem 1 is given in the Appendix.

2 Extension to NTU case

The bargaining situation is described by an n-person coalitional form game
(N,V). N ={1,2,...,n} is a finite set of players and V'(+) is a function that
assigns a subset V(S) of R® to every coalition S C N. The set V(S) can



be interpreted as the set of all feasible payoff vectors to the members of S if
they jointly commit to a certain course of action. We impose on (N, V') the

following assumptions.

Assumption 1. (i) For each coalition S, the set V(S) is closed, convex
and comprehensive (i.e., V(S) — R} C V(S)). Moreover, V(S) N RS is
bounded. (ii) For each coalition S, the boundary of V'(S), 0V (S) is smooth
(i.e., at each y € OV (S), there exists a single outward normal direction) and
nonlevel (i.e., the outward normal vector at any point of V' (S) is positive
in all coordinates). (iii) (Monotonicity) V' (S) x {07\¥} C V(T) whenever
S C N. (iv) (0-normalization) r; = max{c: c € V({i})} = 0.

Exception (iv), these assumptions are also made by Hart and Mas-Colell
(1996). The game (N,V) is called a nontransferable utility (NTU) game. If
there exist a real-valued function v such that V(S) = {¢c € R¥| >, ¢ <
v(S)} for all S C N, the coalitional form game is called a TU (transferable
utility) game. Usually, a TU game is represented by (IV,v). In this case, the
number v(S) may be interpreted as a sum of money that the members of S
can distribute among themselves.

We consider the following noncooperative bargaining procedure. Let 0 <

p < 1 be a fixed parameter.

(i) At every round t = 1,2, ..., one player is selected as a proposer with equal
probability among all players still active in bargaining. Let N! denote the
set of all active players at round ¢. The bargaining starts with all members of

N, ie., N' = N. The selected player i proposes a payoff vector y in V(N?).

(ii) All other players in N either accept or reject the proposal sequentially.
We assume that the responses are made according to a predetermined order

over Nt. If all other players in N* accept, then the game ends with these



payoffs. If some players reject, then the game moves to next round where,
with probability p, the set of active players at round ¢ + 1 is unchanged,
ie., Nt*' = N and with probability 1 — p, one player j drops out with
equal probability among all responders in N*\i, and the set of active players

becomes N1 = N*'\j. The player who dropps out receives a payoff of zero.

Our bargaining model can be represented as an extensive form game
with perfect information and with chance moves. We denote by G*(p) the
bargaining model with active players S for every coalition S C N and for a
parameter p. We shall apply the solution concept of a stationary subgame-
perfect equilibrium (SSPE) to our bargaining model. In order to avoid the
problem of multiplicity of subgame-perfect equilibria, the concept of an SSPE
is commonly adopted in the literature on the noncooperative multilateral
bargaining model (see Chatterjee et al. 1993, Hart and Mas-Colell, 1996,
Okada, 1996 and 2005, among others). For an SSPE strategy combination
o of GV (p) and every coalition S C N, let vg(p) = (v(p))ics € RS be the
expected payoff vector of players for o in the subgame G°(p). We call the
collection {vs(p) | S C N} the payoff configuration of the SSPE o of G (p).

If the game is a TU game (NN, v), the noncooperative bargaining procedure
we consider would yield the “equal split” solution v%(p) = v(S)/|S| for all
S C N and all i € S in an SSPE of G¥(p) as p — 1. This is indicated in
Hart and Mas-Colell (1996). Extending to the general NTU case, we obtain

the following theorem.

Theorem 1. Let (N,V) be an NTU game. For each p, there exists an
SSPE of GN(p). Moreover, as p — 1, the every limit point of SSPE payoff



configurations, {vs|S C N}, satisfies for all S C N and all i € S C N,

[ E Z)‘svs své
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keS\i Jes\k
(1)

where (Ag)jeg is the unique supporting normal to the boundary of V(S) at

vs.

Theorem 1 can be proved in the same line as the proofs of Proposition 6,
7, and 8 in Hart and Mas-Colell (1996). While this proof could be omitted,

we provide it in the Appendix to ensure that the paper is self-contained.

3 Subcoalition-Consistent Nash bargaining so-
lution

The Nash bargaining solution is generally defined on the bargaining problem
(V,r), where V is a feasible set of payoffs and r is a disagreement point. Let
us define the concept of the Nash bargaining solution for a coalitional form

game (N, V).

Definition 1. Suppose that the configuration of disagreement points {rg €
R3|S C N} is given. The subcoalition-consistent Nash bargaining solution of
the coalitional form game (N, V') is a function that assigns to each bargaining
problem (V'(S),rg) constructed by (N,V) a solution of the maximization

problem:

max H — r%) subject to vg € V(S).



If the game is a TU game (N,v) and r¢ = 0 for all S C N, the
subcoalition-consistent Nash bargaining solution is the “equal split” solu-
tion; vy = v(S)/|S] for all S and all i € S. Therefore, as a result of Hart and
Mas-Colell (1996), we can claim that our bargaining procedure does indeed
yield the subcoalition-consistent Nash bargaining solution of the coalitional
form game (N, V) as p — 1 if the game is a TU game. This would not extend
to the general NTU game.

Example: Let us consider the bargaining over the division of a pie among
three players N = {1,2,3}. Assume that a payoff function for player 1,2 is

172 and that for player 3 is us(r) = z'/3. The

given by uq(z) = us(z) =z
size of pie for a single player i = 1,2, 3 is zero; I({i}) = 0, and for coalitions
of two players, I({1,2}) = 8 and I({2,3}) = I({1,3}) = 5. Moreover,
I({1,2,3}) = 24. The set of feasible allocation for a coalition S is defined by
X% ={(z:)ies] > _ 2 < I(S),z; € Ry, Vi € S},
i€s

Let define the characteristic function as follows:
V({i}) = {0} for i =1,2,3,
V({i,j}) = {(v',v) € RL | 3(wi, ;) € Xijy, v < ug(w;) and o7 < uy(z;)},

V({]., 2,3}) = {(vl,vz,v?’) € RiEl(l‘l,.'L'g,fL'g) S X{l,g’g},Vi € {]_, 2,3},Ui S UZ(IL’Z)}

This is an NTU game. Under the configuration of disagreement points such
that rii} = 0 for all i = 1,2,3, ri;;3 = (0,0) for all i,j = 1,2,3, and
rr1231 = (0,0,0), we can calculate the subcoalition-consistent Nash bar-
gaining solution of (N, V). The Nash bargaining solution of the bargaining
problem (V({1,2}),7(1,9)) 18 af, 5, = u1(4) = 412 = 2 and af, g = ua(4) =
442 = 2. The Nash bargaining solution of (V({1,3}),7( ) is a3 =
ui(3) = 3% and @}, 5, = u3(2) = 2'/%. Similarly, that of (V({2,3}),7(2s))

8



is afyq = u2(3) = 312 and afyz = u3(2) = 2'/3. For the bargain-
ing problem (V'({1,2,3}),7{123)), the Nash bargaining solution is given by
{03y = 0oz = ui(9) = uz(9) = 9'/2 = 3 and a9 = u3(6) = 6'/3.

If N ={1,2,3}, the basic equations (1) in Theorem 1, which is satisfied

by the limit of SSPE payoff configurations, are reduced to

u@.} =0fori=1,2,3,

MigyViigy = Mgy Vg for 60 = 1,2,3,0 %

1 1
1 1
Mies (Vs — 5“%1,3}) = Mi2a (V23 — 5”?1,3})v

1 1
)‘%1,2,3}(7)?1,2,3} - 5“%2,3}) = )‘?1,2,3} (U%1,2,3} - 5”?2,3})-

Note that, by definition of the characteristic function, the vector ()\l{Z i )\{i j})

is proportional to the vector (l/u;(ui_l(vim})), l/u;(uj_l(v{ij}))), and also

(Mr2sp Mi2sy Al 23)

I ( 1 1 1
= {17273} - ) - ’ -
uh (u (v o)) (5 (V) 50y)) " b (us (V] 5.51))

)

for some scalar kg 933
It suffices to check that the subcoalition-consistent Nash bargaining so-
lution ag, S C N, does not satisfy the equations system. It is easy to show

that

1 k12,31 1
)\{1:1,2,3}(0«1{172,3} - 5@}{173}) = 6 (3 _ 531/2)

ks 1 1/3 1 1/3 3 3 L
#73 W(6 _52 ):)‘{1,2,3}(a{1,2,3}_50{1,3})

Thus, our bargaining procedure is not necessarily lead to the subcoalition-

consistent Nash bargaining solution as p — 1 in a NTU game.



4 Proportionality condition

We will provide a sufficient condition to generate the subcoalition-consistent
Nash bargaining solution in the limit of SSPEs of the noncooperative bar-

gaining game G (p) as p — 1. First we add the assumption.
Assumption 2. For all i,j € S, V({i,j}) # 0 and (0,0) ¢ oV ({i,j}).

Next, let us introduce some notations and definitions. Any point in R¥
is denoted by ys = (y%)ies. Fori,j € S and ys € RS, {’7} denotes the
(|S] — 2)-dimensional vector constructed from yg by deleting the i-th and the
J-th coordinates y, yS in ys. The point ys can be written as (%, yS, yS{ J})
For any S C N, |S| > 3, ys € V(S) and i,j € S, we can define the following
set:

oV (S)[I) s = { (25, 24 € R (8, 2 55 ) € V() and ys € V(S) |

yeV(S)

By the notion of V(S )|{l 1 )» the following condition of the coalitional form
game (N, V) can be 1ntr0duced.

Proportionality condition: For every S C N such that |S| > 3 and

for every i,5 € S, the set OV (S )|?{fejv} is represented as a proportional

transformation of the set AV ({i,}) N RZ; for any (24, 21) € 8V(5’)|?{/ZE’]V}(S),

there exists k € Ry and (y',¢’) € (OV ({i,5}) NR2) such that (kzj, kz) =

{i,7}
yev(s)

(y*,47), where k is common to all points in 9V (S)

{i,j}

Figure 1 depicts the Proportionality condition. The boundary 0V (S)|,¢v (s

is given by a radial expansion of the set 0V ({i,j}). In addition, the slopes
of a tangent of the boundary set are unchanged along any ray through the

origin.

10



(insert Figure 1 around here. Figurelequalsplit.tex)

It is easy to see that any T'U game satisfies the Proportionality condition.
Furthermore, the Proportionality condition is also satisfied by a hyperplane
coalitional form game (V, V') with the common weight vector Ay, in which the
characteristic function is represented by V(S) = {¢ € R |\s - ¢ < wg,wg €
R, } and Ag is the restriction of Ay to S.

Consider the division of a pie. As seen in the example before, the corre-

sponding characteristic function V' is defined by
V(S) = {vs € R} | x)ics € Xs,Vi € S,v) < uy(w;)} for VS C N,

where X is the set of feasible allocation for a coalition S and ' is the share
of the pie to player i. If u;(z;) = x;, the coalitional form game becomes a TU
game, and if u;(z;) = b'x;, where the value of b° is not necessarily common
among players, the corresponding coalitional game is in a hyperplane coali-
tional form game with the common weight vector. Moreover, if every player
has an identical payoff function, the game is an NTU game, but satisfies the
Proportionality condition.

In general, players’ preferences are defined on the set of lotteries over Xg,
rather than simply on Xg itself (see Osborne and Rubinstein, 1990). The
function w;(-) is interpreted as a von Neumann Morgenstern utility function.
The curvature of u; represents a player’s risk attitude. If u; is concave, player
i is risk averse, and if w;(x;) = x;, i is risk neutral. Then, the above examples
(such as u;(z;) = x;; a TU game, u;(z;) = b'x;; a hyperplane coalitional
form game with the common weight, and the identical utility function case;
ui(x;) = u(z;) for all i € N) represents the same risk attitude of all players.

If all players have the same risk attitude, then the corresponding coalitional

11



form game satisfies the Proportionality condition?. The relationship and in-
terpretation between the two-person Nash bargaining solution and the risk
aversion of players has been examined by Kihlstrom et al. (1981) and Ru-

binstein et al. (1992).

Theorem 2. Let (N, V) be a coalitional form game satisfying Assumption 1,
2 and the Proportionality condition. Then, any SSPE payoff vectors in the
noncooperative bargaining game G (p) converge to the subcoalition-consistent

Nash bargaining solution of (N, V) as p — 1.

Proof. When the game (N, V') satisfies Assumption 1, the boundary 0V (S)N
R? for each S C N is expressed as the set {vg € RY|H%(vg) = 0}, where
H?%(-) is a continuous, concave and differentiable function. Thus, there exists
a function H* such that H*(vg) = 0 for all vg € AV (S)NRY and H*(vg) > 0
for all vg € V(S) NR}. The maximization problem to obtain the Nash
bargaining solution of the bargaining problem (V(S),rs), where rg = 0, is

represented by

mavafg subject to H®(vs) >0, and vl > 0 for all i € S.
vs
ies

We can derive the Kuhn-Tucker condition:

OHS(vg) 1. _ OHS(vS) o, _ OHS(v}) (g
vl 0 oy 0 ol 7
H?(v%) = 0.

The Nash bargaining solution v§ satisfies the Kuhn-Tucker condition. Since
the unit supporting normal \§ to 0V (S) at v§ is proportional to the vec-

tor (OHS(v%)/ovk, ..., 0HS (v5)/0vs"), then the Kuhn-Tucker condition is

2We thank the referees who put forward an interpretation from the viewpoint of risk

attitudes. The Proportionality condition is inspired by this suggestion.
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rewritten as

1% 1% RN EIENEIE
AgUg =+ =Ag vg

H?(vg) = 0.

By the Proportionality condition, there exists a scalar kg such that vy =

ksvy; ;y and (M, XL) = (A2, M) for all i, j € N, where a coalition S contains
i\J.

We can easily see that the above subcoalition-consistent Nash bargaining
solution satisfies equations (1) in Theorem 1 uniquely. This implies the

theorem. 0

As seen in the proof of the Theorem 2, we can obtain the Nash bargaining
solution of each subcoalition S C N if the game follows Assumption 1, 2 and
the Proportionality condition. First, we seek the Nash bargaining solution of
the bilateral bargaining problem (V' ({4, j}), (0,0)) for each i,j € S, and we
obtain payoff ratios between player ¢ and j for all 7, 7 € S. Next, maintaining
the payoff ratio between all players in S, we choose a point in the boundary
of V(S). This is the Nash bargaining solution of the bargaining problem
(V(S),rs), where rg = 0.

Definition 2. We say that V ({i,7}) is symmetric if (,Uii’j}a U{M}) € V({i,i})
if and only if (v{i,j}, v@-,j}) e V({{i,j}).

If V({i,7}) is symmetric, the Nash bargaining solution of the 2-person
bargaining problem (V' ({i,7}),(0,0)) is the equal payoff allocation. Then,

we have the following corollary.

Corollary 1. If the coalitional form game (N,V) satisfies Assumption 1, 2
and the Proportionality condition and V ({i, j}) is symmetric for alli,j € N,

13



then any SSPE payoff configurations in GN(p) converge to the “equal split”

solution as p — 1.

Thus, the “equal split” solution in Hart and Mas-Colell (1996) is im-

plementable through the noncooperative bargaining game G (p) in very re-

stricted situations.
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Appendix: Proof of Theorem 1

In order to prove Theorem 1, we prepare the following lemma. This lemma characterizes

the proposal for each player in an SSPE and shows that no delay occurs in equilibrium.

Lemma 1. In every SSPE o of the game G™ (p) with the payoff configuration {vs | S C
N3}, the corresponding proposal are always accepted, and the equilibrium proposal as; =
(aéi)jeN in the subgame G°(p) for each S C N and each i € S is characterized by:
as,i € AV(9), (2)
_va (1-p Z |S| US\k forall j € Si#j. (3)
keS\i
Proof. The proof is by induction on the number of players. The lemma holds trivially for
the 1-player case. Assume that it holds for the less than n-players case. Let ag;, i € S, be
the proposals of player i in an SSPE. Let define the vector as = (1/|S]) >, as,i- Then,
the jth component of ag is aé = (1/15]) Xics agyi. We denote the expected payoff vector
for the members of S by v° in the subgames G°(p). By induction hypothesis, as = vs.
Since V(N) is convex and v” is a convex combination of points in V' (V), it holds that
N e V(N). Since vy\x € V(N\k) for all k € N, it follows from the monotonicity of
V that the vector (vy\,0) = (U]lv\k, . vN\k,O U]k\ﬁ\}c, e ,U]’\’,\k) belongs to V(N). Now,
we denote by af\,\k the kth coordinate of (vn\k,0). Then, (vy\,0) is represented by
(un\ks UR\1)- The convexity of V/(N) implies that for all i € N
1 k 1 1 1 n
—] (On\k ORR) = (— Y UN\k» T > Vi) EVV).

n—1
kEN\i kEN\i kEN\i

Hence, the convex combination

1

pun + (1 — p)m Z (UN\k,vﬁ,\k) € V(N) for all i € N.
kEN\i

If increasing in the ith coordinate of the vector pyy +(1—p)(1/(n—1)) >Zpc pyi (VN Ujkv\k)
until reaching the boundary 8V (N), we can obtain the vector d;, which satisfies d] = pvj +
(1= p)(1/ (1= 1)) Cpens Vv for j # 1 and di > pu + (1= p)(1/ (1 = 1)) Lenns Ve
The vector d; satisfies (2), (3). For j # 4, the amount d{ is the expected payoff of j when
player j would rejects i’s proposal. Therefore, d; is the best proposal for i among the
proposals that will be accepted if i is the proposer. Furthermore, if i makes any proposal

that is rejected, then i obtains at most pvi; +(1—p)(1/(n—1)) D okeN\i vjv\k, which is less
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than di. Hence, player i will propose ay; = d; and the proposal will be accepted. Then,

we have vy = ax by definition of G (p). O

Let us give the proof of Theorem 1. First, we prove the existence of an SSPE of G (p)
forany 0 < p < 1.

(Existence): We proceed by induction. It is trivial for n = 1. Assume that the
theorem holds for the less than n-players case. This hypothesis implies that there exists
an SSPE for every subgame G (p) for S # N and S C N. We fix one equilibrium strategy
combination in G°(p). Let v%(p) be the expected payoff vector in G°(p). What we have
to do is to construct equilibrium strategies for all remaining nodes in G (p).

Let us take an element vy = (v );en in V(N). We denote by vy’ the (n — 1)-
dimensional vector constructed from vy by deleting the ith coordinate v%;. Suppose that
player ¢ becomes the proposer at round 1 and proposes a solution of the maximization
problem:

. . C1-p .
a 47 . subject to vl . > pvh + —— . , for j € N,j #1i.
T |yl g subject t0 yiv; > puk + gN:\ivN\k(p) rjEN,j#i

Let g}vl(vﬁl) be the maximum value which is attained in the maximization problem. By
Berge’s maximum theorem, g}\“() is a continuous function with respect to U;,i.

For any vy € V(IV), we can define a function

1 —i 1 i (1—p) i*
& (on) = EgN,i(UN ) + ” Z [PUN T Z UN\k(p):|-
JEN\G kEN\j
Moreover, let define £”(vn) = [[;cn & (vn). The function £”(vy) is a continuous function
from V(N) to itself. In addition, the set V' (V) is compact and convex. Then, by Brouwer’s
fixed point theorem, there exists a fixed point vi (p) = (v (p), ..., v (p)) € V(N) such
that for alli € N,
% 1 % — ik 1 ik (1 — p) 1%
WK () = SR () + - 0 [k e) + > vk,

n—1
JEN\i EEN\j

Using the fixed point vi (p), we can construct an SSPE of GV (p). Consider the strategy

combination o* such that

(a) every player i as a proposer offers a solution of the maximization problem:

1-p

max _ yk ,; subject to y{vi > pvﬁ (p) + o
, : n—

J* for i€ N.i 3
yn,iEV(N) vN\k(p)v or j ) # ?

keN\i
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In other words, player ¢ proposes
an,; € IV(N), and

j j * 1 Ed . . .
ay,; = poy (p) + (1= p) Z mva\k(p), for j € N,j #1.
KEN\K

(b) player i as a responder accepts any proposal 3° in the case that player j is a proposer
if and only if
i ik 1 ik
y' 2R () +(1=p) Y —vRk():
kEN\j

By Lemma 1, it is easy to check that o* prescribes every player’s (locally) optimal
choice at his every move in GV (p). Thus, o* is an SSPE of G (p) with the payoff
configuration {v§(p)|S C N}.

(SSPE payoff configuration): Next, we introduce the notion of a hyperplane coalitional
form game (N,V). In this game, each V(S) is defined as a half space in ]Ri. Thus, the
set V() is represented by for some \g € RS, ,

V(S) def {c eRS ‘ Z)\fgci < wg} .
€S

We can get the following lemma.

Lemma 2. Let (N, f/) be a hyperplane coalitional form. Then for each 0 < p < 1 there
exist a unique SSPE of GN (p). Moreover, the SSPE payoff configuration (vs)scn satisfies
that for alli € S C N,
S Mk X [+ Y o Nk — g X M| =0 @
I e vesu 19 IS1-1 .55, \
Proof. We have already proved the existence of an SSPE of G (p) in the general NTU
game (N, V). Then, we focus on the SSPE payoff configuration in a hyperplane coalitional
game. By Lemma 1, we can regard as (the average of proposals for each subgame in an
SSPE) in the same light as vs (the expected payoff vector in an SSPE). Thus, as = vs
for all S C N. Here, vs and ag is often used interchangeably.
We proceed by induction. Assume the statement is correct for the less than n-players

case. Let Ay € R}, and

V(N) % {ce R®

Z)\fvci < wN} .

i€EN
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By definition of a%; and by Lemma 1, it holds that for every i € N

id i i i
n)\NvN—/\NaNJ%- E ANaN,j

JEN\i
= (wy — Z /\g\,afl\,’i)+ Z )\ﬁvaf\w
FEN\G JEN\i
- Vi,
—un = 30 Mok +(1-p) 30 )
JEN\i kEN\i
i i Uik
Y Ml +(1-p) Y 2N,
FEN\G kEN\j

Since wy = EjEN )\g\,vfn\,, the above equality is rewritten by
i i i L—p i
nAyvy = (1 -p) Z ANVN + A pUy — n_1 Z Z Afv”?v\k
JEN kEN\i jEN\i

i 1—p i
+(n-1) NPUN T Z Z ANUN k-
FEN\i kEN\E

Then, it reduces to the following equality:

n(1=p) Aol = (L=p) D Myvhy +(1=p) Y Mok
kEN\i JEN

1— o
_n—_l_{ Z Z Afv”?v\k-

keEN\ijEN\i

By dividing the last equality by n(1 — p) and rearranging, we obtain equation (4).

By Lemma 2, we can derive the SSPE payoff configuration in Theorem 1 as p — 1.

Let As(p) be the outward unit normal to the hyperplane passing through the vector

asi | i € S}, and let V,(S) be the half-space below the hyperplane. Then, we have a
) p

hyperplane coalitional form game (N, f/p) for each p.

By Lemma 1, we have, for all S C N and for all i € S,

lim as; = lim v5(p) = as = vs.
p—1 p—1

Furthermore, it follows from Assumption 1 that the boundary oV (S)N ]lel is smooth and

nonlevel. Hence, we have As(p) — As as p — 1. Therefore, we obtain

V,(S) = V'(S) € {c € R® | Agc < Asvs).
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It is clear from Lemma 1 that the payoff configuration v(p) remains an SSPE payoff
configuration for the hyperplane coalitional form (N, V,). By Lemma 2, v(p) satisfies the
equation (4) of (N, V,). Therefore, as p — 1, the limit point (vs)scn of the SSPE payoff
configuration of the game (N, V) is precisely the payoff configuration of the hyperplane
form (N, V"), which satisfies equation (4). Note that equation (1) is in the same form as

equation (4). This completes the proof of Theorem 1.
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