The Mysterious Number 6174
One of 30 Amazing Mathematical Topics in Daily Life

Yutaka Nishiyama

Gendai Sugakusha
Osaka University of Economics Research Series, Vol. 99
The Mysterious Number 6174
One of 30 Amazing Mathematical Topics in Daily Life
By
Yutaka Nishiyama

Gendai Sugakusha, Co.

Osaka University of Economics Research Series, Vol. 79
Preface

This book is designed to reach a wide audience. Not only is it written for readers of all ages, from young to old, but it is also targeted to those who have a dislike of maths. The aim is to show just how wonderful maths really is! This book is a compilation of 30 articles that I originally issued as a series entitled “Enjoying Maths” for the Japanese magazine *Rikeieno Sugaku* (*Mathematics for Science*). All articles are independent of each other and readers can move throughout the book as they please, exploring the wonder of maths as they go.

The book contains my original articles as well as references to other unique articles about the use of maths in daily life. In terms of my original articles, learn about boomerangs, one of my life works. Find out why a boomerang comes back to you and follow the instructions on how to make and throw paper boomerangs to explore this practically. In fact, people all over the world have already tried this: the original article has been translated into 70 languages so far, as can be seen on one of my websites at http://www.kbn3.com/bip/index2.html.

Also find out why so many flowers are five-petalled. Why do we have five digits on our hands and feet? I will explain my hypothesis about the mysterious occurrences of the number “5” hidden in nature. I also explain the development of a theorem about constructing fixed points and the random-dot pattern that facilitated the invention of this new theorem.

This book also contains unique articles about the use of maths in daily life. Find out the answers to questions such as how can two separate light switches in the hall of our house as well as on the upstairs landing work to turn on and off the same light? Why do some electric fans appear to rotate backwards? Why are eggs oval shaped? I think about these issues mathematically, and try to pose intriguing questions
you won’t find in any textbooks and provide understandable answers. Although the maths community often discusses how to solve problems more efficiently, I like to emphasize the enjoyment and the importance of discovering new mathematics problems in daily life.

Many puzzles dealing with diagrams or numbers are explained. One example is the block overhang problem: is it possible to stagger building blocks by more than the width of one block? Other examples include why a Möbius strip produces one large loop when cut instead of separating into two pieces. Learn about the new face of hexaflexagons and how they work. Do you know about Miura folding, where a single movement can be used to open and close a sheet of paper? How about the increasing and decreasing of areas in card magic? Do you know how it’s done?

Then try some really fun uses of numbers that will impress your friends. Take any four digits, reorder them into the largest and smallest numbers possible, take the difference between the largest and the smallest, and repeat until the sequence eventually arrives at number 6174. A summary of this article appears on the University of Cambridge website, at http://plus.maths.org/issue38/features/nishiyama/.

Learn about why maths is really useful in everyday life and how it is applied. For example, the planimeter measures areas just by tracing a closed curve. So, maths is not just a way some people wile away time. It really does have lots of practical applications. Do you know the inside of random numbers or root of how they are calculated? I hope to open up and explore the black boxes of many such issues.

Many people are put off by mathematical technical terms such as the calculus of variations in the problem of quickest descent, Taylor expansion in Machin’s formula and Pi, group theory in Burnside’s lemma and the theory of cyclotonic equations in Gauss’ method of constructing a regular heptadecagon. But through this book we can gradually understand the beauty of maths by trying to discover how to view these problems with interest and find fun in studying them.

I also discuss some of the cultural issues surrounding maths: the huge popularity in 2005 of the number game Sudoku, which is especially liked by European people; why Japanese like odd numbers and Westerners emphasize even numbers, which can possibly be explained according to the principle of Yin-Yang in Chinese philosophy; the difference between Japanese and European architecture which can be explained mathematically in terms of curves and straight lines; and the various methods across the globe for starting to count at “one” with either the index finger, thumb or little finger. All of these differ according to region, ethnicity and historical period. I hope that your curiosity is awakened
by the connections between maths and culture as mine was.

This collection of 30 articles addresses just some of the aspects of maths that I enjoy very much. I hope this book will be enjoyed not only by readers who like maths, but also by those who find it difficult and want to gain some insight into the world of maths and logical thinking.

Yutaka Nishiyama

July 2013
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>chapter 1</td>
<td>Why Do Boomerangs Come Back?</td>
</tr>
<tr>
<td>chapter 2</td>
<td>Five Petals: The Mysterious Number “5” Hidden in Nature</td>
</tr>
<tr>
<td>chapter 3</td>
<td>An Elegant Solution for Drawing a Fixed Point</td>
</tr>
<tr>
<td>chapter 4</td>
<td>Stairway Light Switches</td>
</tr>
<tr>
<td>chapter 5</td>
<td>The Mathematics of Fans</td>
</tr>
<tr>
<td>chapter 6</td>
<td>The Mathematics of Egg Shape</td>
</tr>
<tr>
<td>chapter 7</td>
<td>What’s in a Barcode? Duplicated Combinations</td>
</tr>
<tr>
<td>chapter 8</td>
<td>Building Blocks and Harmonic Series</td>
</tr>
<tr>
<td>chapter 9</td>
<td>Playing with Möbius Strips</td>
</tr>
<tr>
<td>chapter 10</td>
<td>A General Solution for Multiple Foldings of Hexaflexagons</td>
</tr>
<tr>
<td>chapter 11</td>
<td>Turning Things Inside Out</td>
</tr>
<tr>
<td>chapter 12</td>
<td>Miura Folding: Applying Origami to Space Exploration</td>
</tr>
<tr>
<td>chapter 13</td>
<td>The Sepak Takraw Ball Puzzle</td>
</tr>
<tr>
<td>chapter 14</td>
<td>Increasing and Decreasing of Areas</td>
</tr>
<tr>
<td>chapter 15</td>
<td>The Mysterious Number 6174</td>
</tr>
</tbody>
</table>
Abstract: The number 6174 is a really mysterious number. At first glance, it might not seem so obvious, but as we are about to see, anyone who can subtract can uncover the mystery that makes 6174 so special.

AMS Subject Classification: 11A02, 00A09, 97A20
Key Words: 6174, Kaprekar operation, Kaprekar constant, Number theory

1 The Kaprekar Operation

6174 is truly a strange number. It is also a number with which we share a close relationship from elementary school up to university. But before explaining what kind of number it is, would you mind doing a little simple arithmetic?

First choose a single 4-digit number. When choosing, please avoid numbers with four identical digits like 1111 or 2222. For example, let’s consider the year, 2005. Take the four digits that compose the number and reorder them into the largest and smallest numbers possible. For numbers with less than 4-digits, pad the left-hand side with zeroes to maintain 4-digits. In the case of 2005, the results are 5200 and 0025.

Taking the difference between the largest and the smallest yields 5200 – 0025 = 5175.

This type of operation is known as a Kaprekar operation. The name derives from that of the Indian mathematician D.R. Kaprekar, who discovered a special property of the number 6174. Iterating the operation on our newly revealed number yields,

7551 – 1557 = 5994
9954 – 4599 = 5355
5553 – 3555 = 1998
9981 – 1899 = 8082
8820 – 0288 = 8532
8532 − 2358 = 6174
7641 − 1467 = 6174.

When the number becomes 6174, the operation repeats and 6174 thus cycles, and is known as the ‘kernel.’ No matter what the initial number may be, the sequence will eventually arrive at 6174. In fact, the kernel number 6174 will definitely be reached. If you remain doubtful, try the process again with a different number. 1789 develops as follows.

9871 − 1789 = 8082
8820 − 0288 = 8532
8532 − 2358 = 6174

2005 reaches 6174 after the Kaprekar operation is applied 7 times. 1789 reaches it after 3 times. This works for all 4 digit numbers. Isn’t this strange? For elementary school pupils this is good practice for subtracting 4 digit numbers. For university students, thinking about why this happens reveals that 6174 is an exceptionally fascinating number. From this point on, I’d like to take a close look at the background of this number.

2 Solution Using Simultaneous Linear Equations

Let the largest number formed by rearranging the 4 digits be represented as \(abcd\) and the smallest as \(dcba\). Since the solution is cyclic, the difference between these two may be expressed as a combination of the digits \(\{a, b, c, d\}\).

With \(9 \geq a \geq b \geq c \geq d \geq 0\) and the subtraction

\[
\begin{array}{cccc}
 a & b & c & d \\
- & d & c & b \\
\hline
 A & B & C & D \\
\end{array}
\]

the differences between each digit obey the following relationships.

\[
D = 10 + d - a \quad (a > d)
\]

\[
C = 10 + c - 1 - b = 9 + c - b \quad (b > c - 1)
\]

\[
B = b - 1 - c \quad (b > c)
\]

\[
A = a - d
\]

Consider the relationship between the value of \((A, B, C, D)\) and the set \(\{a, b, c, d\}\). Since there are 4 equations and 4 variables, this is a 4-dimensional simultaneous linear equation. It ought to have a solution. Calculating the number of permutations of the elements of \(\{a, b, c, d\}\) yields \(4! = 24\) alternatives. It is sufficient to test each of these. The
details are omitted but the unique solution of this simultaneous linear equation occurs when \((A, B, C, D) = (b, d, a, c)\). Solving this we obtain \((a, b, c, d) = (7, 6, 4, 1)\).

\(abcd - dcba = bdac\), i.e., \(7641 - 1467 = 6174\), and the kernel number is 6174.

This phenomenon occurring with 4-digit numbers is also known to occur with 3-digit numbers. For example, with the 3-digit number 753, the calculation is as follows.

\[
\begin{align*}
753 - 357 &= 396 \\
963 - 369 &= 594 \\
954 - 459 &= 495 \\
954 - 459 &= 495
\end{align*}
\]

In the 3-digit case, the number 495 is reached, and this occurs for all 3-digit numbers. Why don’t you try some?

3 The Number of Iterations Needed to Reach 6174

I first heard about the number 6174 from an acquaintance in around 1975 and it made a strong impression on me. I was surprised by the beautiful fact that all 4-digit numbers reach 6174, and thought it might be possible to prove this easily using high school-level mathematical knowledge. But the calculations are surprisingly complex and I left the problem in an unsolved state. At that time I made a copy of a journal paper about the topic. I attempted to investigate the upper limit on the number of iterations necessary to settle on the number 6174 using a computer. By means of a Visual Basic program with about 50 lines, I tested all the 4-digit numbers between 1000 and 9999. This included all 8991 digit natural numbers excluding those with 4 equal digits (1111, 2222, etc., 9999).

Table 1 shows the frequency of each number of iterations needed to reach 6174. The largest number of steps needed is 7. If 6174 is not reached in 7 iterations, then a mistake was made during calculation. This is useful educational material for elementary school students to practice subtracting 4-digit numbers. For the initial number 6174, without even performing any Kaprekar operations, 6174 has already been reached, so in this case the number of iterations is taken as 0.
Table 1. Number of Iterations Needed to Reach 6174

<table>
<thead>
<tr>
<th>Number of iterations</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>356</td>
</tr>
<tr>
<td>2</td>
<td>519</td>
</tr>
<tr>
<td>3</td>
<td>2124</td>
</tr>
<tr>
<td>4</td>
<td>1124</td>
</tr>
<tr>
<td>5</td>
<td>1379</td>
</tr>
<tr>
<td>6</td>
<td>1508</td>
</tr>
<tr>
<td>7</td>
<td>1980</td>
</tr>
<tr>
<td>Total</td>
<td>8991</td>
</tr>
</tbody>
</table>

4 The Route to 6174

Kaprekar was an Indian mathematician active in the 1940s, and you can find more details about him in [2]. The aspects of the problem are explained as follows.

Taking an arbitrary 4-digit number expressed as $abcd$ (where $a \geq b \geq c \geq d$) and executing the first subtraction may be considered as follows. The largest 4-digit number is equal to $1000a + 100b + 10c + d$, so the smallest number is $1000d + 100c + 10b + a$. Subtracting the smallest number from the largest and combining similar terms yields the following.

$$
1000a + 100b + 10c + d - (1000d + 100c + 10b + a) \\
= 1000(a - d) + 100(b - c) + 10(c - d) + (d - a) \\
= 999(a - d) + 90(b - c)
$$

Here, $a - d$ has a value between 1 and 9, and $b - c$ takes an arbitrary value between 0 and 9, so in total there are 90 numbers taking the form above. Figure 1 was produced in order to confirm this fact.

In this figure $(a - d) \geq (b - c)$, so the 36 entries in the bottom left (a catch-all case) are meaningless numbers. Next we will execute the second subtraction, so the numbers in Figure 1 are rearranged into the corresponding largest values as shown in Figure 2.

Ignoring the repetitions of the catch-all cases, there are 30 entries remaining in this figure. Figure 3 shows a schematic diagram of the ways in which these 30 numbers reach 6174. According to this diagram, it should be possible to understand at a glance that all 4-digit natural numbers reach 6174. It can also be seen that at most 7 iterations are necessary. Even so, it’s certainly strange. Was Kaprekar, who discovered
MYSTERIOUS NUMBER 6174

<table>
<thead>
<tr>
<th>(999 \times (a - d))</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>999</td>
<td>1998</td>
<td>2997</td>
<td>3996</td>
<td>4995</td>
<td>5994</td>
<td>6993</td>
<td>7992</td>
<td>8991</td>
</tr>
<tr>
<td>1</td>
<td>1089</td>
<td>2088</td>
<td>3087</td>
<td>4086</td>
<td>5085</td>
<td>6084</td>
<td>7083</td>
<td>8082</td>
<td>9081</td>
</tr>
<tr>
<td>2</td>
<td>1179</td>
<td>2178</td>
<td>3177</td>
<td>4176</td>
<td>5175</td>
<td>6174</td>
<td>7173</td>
<td>8172</td>
<td>9171</td>
</tr>
<tr>
<td>3</td>
<td>1269</td>
<td>2268</td>
<td>3267</td>
<td>4266</td>
<td>5265</td>
<td>6264</td>
<td>7263</td>
<td>8262</td>
<td>9261</td>
</tr>
<tr>
<td>4</td>
<td>1359</td>
<td>2358</td>
<td>3357</td>
<td>4356</td>
<td>5355</td>
<td>6354</td>
<td>7353</td>
<td>8352</td>
<td>9351</td>
</tr>
<tr>
<td>5</td>
<td>1449</td>
<td>2448</td>
<td>3447</td>
<td>4446</td>
<td>5445</td>
<td>6444</td>
<td>7443</td>
<td>8442</td>
<td>9441</td>
</tr>
<tr>
<td>6</td>
<td>1539</td>
<td>2538</td>
<td>3537</td>
<td>4536</td>
<td>5535</td>
<td>6534</td>
<td>7533</td>
<td>8532</td>
<td>9531</td>
</tr>
<tr>
<td>7</td>
<td>1629</td>
<td>2628</td>
<td>3627</td>
<td>4626</td>
<td>5625</td>
<td>6624</td>
<td>7623</td>
<td>8622</td>
<td>9621</td>
</tr>
<tr>
<td>8</td>
<td>1719</td>
<td>2718</td>
<td>3717</td>
<td>4716</td>
<td>5715</td>
<td>6714</td>
<td>7713</td>
<td>8712</td>
<td>9711</td>
</tr>
<tr>
<td>9</td>
<td>1809</td>
<td>2808</td>
<td>3807</td>
<td>4806</td>
<td>5805</td>
<td>6804</td>
<td>7803</td>
<td>8802</td>
<td>9801</td>
</tr>
</tbody>
</table>

Figure 1: The Numbers after the First Subtraction

<table>
<thead>
<tr>
<th>(999 \times (a - d))</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9000</td>
<td>9081</td>
<td>9072</td>
<td>9063</td>
<td>9054</td>
<td>9054</td>
<td>9053</td>
<td>9052</td>
<td>9051</td>
</tr>
<tr>
<td>1</td>
<td>9810</td>
<td>8820</td>
<td>7830</td>
<td>6840</td>
<td>5850</td>
<td>4860</td>
<td>3870</td>
<td>2880</td>
<td>1890</td>
</tr>
<tr>
<td>2</td>
<td>8721</td>
<td>7731</td>
<td>6741</td>
<td>5751</td>
<td>4761</td>
<td>3771</td>
<td>2781</td>
<td>1791</td>
<td>0801</td>
</tr>
<tr>
<td>3</td>
<td>7632</td>
<td>6642</td>
<td>5652</td>
<td>4662</td>
<td>3672</td>
<td>2682</td>
<td>1692</td>
<td>0702</td>
<td>9801</td>
</tr>
<tr>
<td>4</td>
<td>6543</td>
<td>5553</td>
<td>4563</td>
<td>3573</td>
<td>2583</td>
<td>1593</td>
<td>0603</td>
<td>9713</td>
<td>8801</td>
</tr>
<tr>
<td>5</td>
<td>5454</td>
<td>4464</td>
<td>3474</td>
<td>2484</td>
<td>1494</td>
<td>0504</td>
<td>9514</td>
<td>8524</td>
<td>7534</td>
</tr>
<tr>
<td>6</td>
<td>4365</td>
<td>3375</td>
<td>2385</td>
<td>1395</td>
<td>0405</td>
<td>9415</td>
<td>8425</td>
<td>7435</td>
<td>6445</td>
</tr>
<tr>
<td>7</td>
<td>3276</td>
<td>2286</td>
<td>1296</td>
<td>0306</td>
<td>9316</td>
<td>8326</td>
<td>7336</td>
<td>6346</td>
<td>5356</td>
</tr>
<tr>
<td>8</td>
<td>2187</td>
<td>1197</td>
<td>0207</td>
<td>9217</td>
<td>8227</td>
<td>7237</td>
<td>6247</td>
<td>5257</td>
<td>4267</td>
</tr>
<tr>
<td>9</td>
<td>1098</td>
<td>0098</td>
<td>9088</td>
<td>8098</td>
<td>7098</td>
<td>6098</td>
<td>5098</td>
<td>4098</td>
<td>3098</td>
</tr>
</tbody>
</table>

Figure 2: The Numbers Prior to the Second Subtraction
this, a man of exceptional intelligence or was he a man of exceptional leisure?

5 Recurring Decimals

Real numbers include both rational and irrational numbers. Rational numbers are those that can be expressed as a fraction \(\frac{n}{m} \) (\(m, n \) are integers and \(m \neq 0 \)), while irrational numbers are those that cannot be expressed in this way.

Real numbers may be written as decimals. Rational numbers are finite or recurring decimals. Irrational numbers, on the other hand, are non-cycling infinite decimals. For example, the following numbers are irrational.

\[
\sqrt{2} = 1.41421356237309504880168872420 \cdots \\
\pi = 3.141592653589793238462643383279 \cdots
\]

Recurring decimals, which are rational numbers, are explained as follows. Recurring decimals are those infinite decimals for which after some point a sequence of digits (the recurring sequence) repeats indefinitely. When writing recurring decimals, a dot is marked above each end of the recurring sequence when it first appears. The remaining digits are omitted. For example,
0.7214 = 0.7214214214⋯
is such a recurring decimal. By expressing this number using a geometrical progression, and using the formula for geometrical progression, it is possible to find a corresponding fraction.

\[
0.7214 = \frac{7}{10} + \frac{214}{10^4} + \frac{214}{10^7} + \cdots
\]

\[
= \frac{7}{10} + \frac{214}{10^4}(1 + \frac{1}{10^3} + \frac{1}{10^6} + \cdots)
\]

\[
= \frac{7}{10} + \frac{214}{10^7} \times \frac{1}{1 - \frac{1}{10^3}}
\]

\[
= \frac{7}{10} + \frac{214}{10(10^3 - 1)} = 7209
\]

The denominator is 9990 = 2 × 3^3 × 5 × 37.

This recurring decimal is a rational number whose denominator contains other prime factors besides 2 and 5. Rational numbers may be classified as follows by examining the prime factorization of the denominator.

Finite decimals: factors include 2 and 5 alone
Pure recurring decimals: factors do not include 2 or 5
Mixed recurring decimals: factors include 2 or 5 as well as other factors

Pure recurring decimals are formed from the recurring sequence alone, while mixed recurring decimals also include another part besides the recurring sequence. For example, \(\frac{1}{4} = 0.25\) is a finite decimal, \(\frac{1}{7} = 0.142857\) is a pure recurring decimal and \(\frac{1}{12} = 0.083\) is a mixed recurring decimal, because \(4 = 2^2\), \(7 = 7\) and \(12 = 2^2 \times 3\).

The Kaprekar operation may be applied to these recurring decimals. When the number has 3 or 4 digits, after a finite number of iterations the numbers 495 and 6174 are reached, respectively, so the sequence has a form like a single mixed recurring decimal.

6 What Happens with 2 Digits and with 5 or More Digits?

Numbers with 4 or 3 digits converge on a unique number, but what happens in the case of 2 digits? For example, starting with 28 and
repeating the largest-minus-smallest Kaprekar operation yields

\[28 \rightarrow 82 - 28 = 54 \rightarrow 54 - 45 = 9 \rightarrow 90 - 09 = 81 \rightarrow 81 - 18 = 63 \rightarrow 63 - 36 = 27 \rightarrow 72 - 27 = 45 \rightarrow 54 - 45 = 9,\]

which beginning with 9, cycles in the pattern 9 \(\rightarrow\) 81 \(\rightarrow\) 63 \(\rightarrow\) 27 \(\rightarrow\) 45 \(\rightarrow\) 9. Thus for numbers of 2 digits, a certain domain cycles in a similar fashion to two mixed recurring decimals.

Next, what happens with 5-digit numbers? First, isn’t there a kernel value like 6174 and 495? Expressing a 5-digit number using \(9 \geq a \geq b \geq c \geq d \geq e \geq 0\), the largest minus the smallest may be written as \(abcde - edcba = ABCDE\), where \((A, B, C, D, E)\) is chosen from the 120 permutations of \(\{a, b, c, d, e\}\). This is a constrained case-based simultaneous linear equation. Regarding the 5-digit Kaprekar problem, a considerable amount of computation has already been performed and as a consequence it is known that there is no kernel value, and all 5-digit numbers enter one of the following loops.

\[
\begin{align*}
71973 & \rightarrow 83952 \rightarrow 74943 \rightarrow 62964 \\
75933 & \rightarrow 63954 \rightarrow 61974 \rightarrow 82962 \\
59994 & \rightarrow 53955
\end{align*}
\]

Regarding integers with 6 or more digits, Malcolm Lines indicates that increasing the number of digits soon becomes a tedious issue merely increasing the computation time [2]. The existence of kernel values is summarized in Table 2.

<table>
<thead>
<tr>
<th>Digits</th>
<th>Kernel values</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Nothing</td>
</tr>
<tr>
<td>3</td>
<td>495</td>
</tr>
<tr>
<td></td>
<td>Unique</td>
</tr>
<tr>
<td>4</td>
<td>6174</td>
</tr>
<tr>
<td></td>
<td>Unique</td>
</tr>
<tr>
<td>5</td>
<td>Nothing</td>
</tr>
<tr>
<td>6</td>
<td>549945, 631764</td>
</tr>
<tr>
<td>7</td>
<td>Nothing</td>
</tr>
<tr>
<td>8</td>
<td>63317664, 97508421</td>
</tr>
</tbody>
</table>

Table 2. Kernel Values

This table reveals that for 6 and 8 digits, there are 2 kernel values, and in some cases one of the kernel values is reached, while in others cases the sequence enters a loop. For a computer with 32-bit words, integers are represented using 32 bits, so it is possible perform calculations up to \(2^{31} - 1 = 2147483647\), which is around the beginning of 10-digit
numbers. Just as Lines described, it began to seem nonsensical, so I stopped calculating.

I wanted to know more about the roots of this problem and investigated a little further. I encountered Martin Gardner’s book by chance, and came to understand the situation [1]. The explanation at the end of his book states that the number 6174 is called Kaprekar’s constant after an Indian named Dattathreya Ramachandra Kaprekar, that he was the first person to demonstrate its importance ([I]

Another Solitaire Game

Scripta Mathematica

15 (1949), pp 244-245), and that he subsequently presented “An Interesting Property of the Number 6174” (1955), “The New Constant 6174” (1959) and “The Mathematics of the New Self Numbers” (1963). It seems that these represent the truth of the matter, and computer-based revelations have placed the number under a spotlight of attention.

Martin Gardner takes it that for numbers with 1, 2, 5, 6 and 7 digits, Kaprekar’s constant does not exist. However, as shown above, for 6-digit numbers there are two kernel values (these cases are not known as Kaprekar’s constants). Gardner also states kernel values for numbers with 8, 9 and 10 digits. For 8 digits it is 97508421, for 9 digits 864197532 and for 10 digits 9753086421. The subtractions are as follows.

\[
\begin{align*}
98754210 &- 01245789 = 97508421 \\
987654321 &- 123456789 = 864197532 \\
9876543210 &- 0123456789 = 9753086421
\end{align*}
\]

The form is beautiful in the 9- and 10-digit cases, and these were probably obtained intuitively. Perhaps the value for the 8-digit case was obtained through computer processing. It might alternatively have been found using a calculator or pencil and paper arithmetic. It is sufficient if there is a way to find out without resorting to computer power. If I have another opportunity I’ll try investigating using a different method. This problem remains captivating, and I’d like to mention David Wells’ book which is of historical interest and discusses each of the numbers [4].

7 Chance or Necessity?

The existence of cyclic numbers is made clear by the simultaneous linear equations. It was proven that for 3-digit numbers 495 is a unique cyclic number, and likewise 6174 for 4-digit numbers. It was also confirmed that all 3-digit numbers converge on 495 and that all 4-digit numbers converge on 6174. However, this was merely demonstrated, and I think
that the real reason why all the numbers converge on the cyclic number has not been demonstrated.

Is it by chance or by necessity that it only works for 3- and 4-digit numbers? I have a feeling that it is a matter of chance. Allow me to introduce the following puzzle which has already been solved [3].

\[
\begin{array}{ccccc}
\hline

&
&
&
&
\times
\hline
1 & 2 & 3 & 4 & 5
\end{array}
\begin{array}{ccccc}

&
&
&
&
\hline
6 & 7 & 8 & 9
\end{array}
\]

This worm-eaten arithmetic puzzle involves putting numbers in the blank boxes, but the form is so beautiful that I had hoped in my heart that perhaps some great theory of numbers lay hidden within, but I found out that it is merely coincidental. It has been confirmed that there is a host of such puzzles in existence.

\[
\begin{array}{ccccc}
\hline

&
&
&
&
\times
\hline
1 & 2 & 3 & 4 & 5
\end{array}
\begin{array}{ccccc}

&
&
&
&
\hline
6 & 7 & 8 & 4
\end{array}
\]

Kaprekar’s problem may be thought of as a similar type to this worm-eaten arithmetic problem. The trick for solving this problem is to use the prime factorization. Applying this to the first example,

\[123456789 = 3 \times 3 \times 3607 \times 3803,\]

and the answer is \(10821 \times 11409\). Applying the same method to the latter,

\[123456784 = 2^4 \times 11^2 \times 43 \times 1483,\]

and the answer is \(10406 \times 11864\).

Historically, some of the developments in science and mathematics have been prompted by ‘mistakes.’ For the worm-eaten arithmetic problem, given the former case the desire to try and solve it occurs naturally, while in the latter case one probably wouldn’t be particularly interested. The reason is that the former statement appears so beautiful. Just knowing that under Kaprekar operations all 4-digit numbers converge on 6174 and all 3-digit numbers on 495 provides sufficient charm as a mathematical puzzle. Who could say that this is merely a coincidence? I hope that some great theory of mathematics might lie behind it. This hope might end up being a beautiful mistake, but that’s something I don’t wish to believe.
References

The Wonder of Recreational Mathematics...

Yutaka Nishiyama was born in 1948 and is currently a professor at Osaka University of Economics, Japan. After studying mathematics at the University of Kyoto, he went on to work for IBM Japan for 14 years. He is interested in the mathematics that occurs in daily life, and has written eight books on the subject. His most recent book is entitled “The Mystery of Five in Nature.” He was a visiting fellow at the University of Cambridge in 2005 and joined the Millennium Mathematics Project. He is also Honored Director of the Japan Boomerang Association and wishes to foster world peace through its activities.

This book is a compilation of 30 articles originally issued as a series entitled “Enjoying Maths” for the Japanese magazine Rikeieno Sugaku (Mathematics for Science).

Chapters include:
- Why Do Boomerangs Come Back?
- Stairway Light Switches
- The Mathematics of Egg Shape
- The Mysterious Number 6174
- Counting with the Fingers