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Abstract

This paper presents a noncooperative foundation of the asymmet-
ric Nash bargaining solution for an n-person bargaining problem. We
show that an SSPE (stationary subgame-perfect equilibrium) payoff
vector of the noncooperative bargaining model is equal to the asym-
metric Nash bargaining solution of the bargaining problem as the risk
of the breakdown of negotiations is very small. If the feasible set
of payoffs is convex in the bargaining problem, any Pareto-efficient
payoff allocation is implemented by an appropriately given bargaining
procedure. In this, there is a one-to-one correspondence between the
weight of players for the asymmetric Nash bargaining solution and the
probability distribution for selecting a proposer in the noncooperative
bargaining game.
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1 Introduction

We present a model of noncooperative bargaining to support the n-person
Nash bargaining solution. More precisely, it is shown that as the probability
of the breakdown of negotiations goes to zero (that is, as the cost of delay
becomes small), payoff vectors in stationary subgame-perfect equilibria of
our bargaining game converge to the n-person asymmetric Nash bargaining
solution. The program of establishing noncooperative foundations for the
Nash bargaining solution (characterized by four axioms in Nash, 1950) was
initiated by Nash (1953). He provided a model of simultaneous offers, called
Nash’s “demand game”, and showed that the Nash bargaining solution of
a 2-person bargaining problem is supported by a Nash equilibrium that is
robust to perturbations in the structure of the game. Subsequently, Rubin-
stein (1982) presented an alternating-offer bargaining game where the payoff
vectors in every subgame-perfect equilibrium converge to the Nash bargain-
ing solution as the players’ discount factor goes to one. Both of these papers
study the bilateral bargaining problem and the symmetric Nash bargaining
solution.

The extensions to the n-person multilateral bargaining problem has been
pursued by Hart and Mas-Colell (1996) and Krishna and Serrano (1996).
They presented a model of noncooperative bargaining game to implement
the symmetric Nash bargaining solution of an n-person bargaining problem.
Our bargaining procedure is a variation of the random proposer model (Hart
and Mas-Colell, 1996, Okada, 1996). In the model, one player is selected as
a proposer according to some probability distribution among n players and
proposes a feasible payoff vector. The proposal is agreed to by unanimous
consent among the players and the game then ends with these payoffs. If it

is rejected by some players, with an almost all probability the same bargain-



ing game is repeated again, but with a small probability negotiations break
down. In Hart and Mas-Colell’s procedure, a proposer is randomly selected
with equal probability among all players. In the case of the pure bargain-
ing problem (that is, problems where the only possible final outcomes are
either the full cooperation of all players or the complete breakdown of coop-
eration), our bargaining procedure provides a generalized model of Hart and
Mas-Colell. Krishna and Serrano (1996) also provided a multilateral bargain-
ing game different from the one that requires unanimous agreement. In their
model, the proposal protocol is predetermined, and players who accept the
proposal receive their payoffs immediately and exit the game. Negotiations
then continue among the players who rejected the proposal.

A bargaining problem can be described by a pair (V,r), where V is the
feasible set of utilities and r is a disagreement point. Note that our bar-
gaining procedure generates the asymmetric Nash bargaining solution of the
bargaining problem (V,r): that is, it generates the solution of the follow-
ing maximization problem: max,cy [[;c v (vi — r;)%, where Y ien i =1 and
; > 0. The symmetric Nash bargaining solution is regarded as a special case
of ; = 1/n for all i € N. Owing to this generalization, we are also able to
show that if the feasible set V' is convex, any Pareto-efficient payoff alloca-
tion is realized through our bargaining procedure by choosing an appropriate
probability distribution in selecting a proposer. This is the second result of
our paper.

Recently, Okada (2005) presented a noncooperative foundation of the
asymmetric Nash bargaining solution for a cooperative game in strategic
form. His bargaining procedure is almost the same as that in the current
paper. Since a strategic form game was considered, players would negotiate

their actions in the strategic form game. Moreover, players are permitted to



form coalitions. In current model, players negotiate the allocation of payoffs
and are prohibited from strategically forming coalitions. However, because of
the restriction to pure bargaining situations, we obtain more clearcut results
than those derived in Okadal.

This paper is organized as follows. Section 2 defines the asymmetric Nash
bargaining solution of the n-person bargaining problem. Section 3 provides
our noncooperative bargaining game model and defines the equilibrium con-
cept. Section 4 states the main results. Section 5 gives the proof of the

Theorem 1.

2 Nash Bargaining Solution

Let us define the bargaining problem. The set of n players is N = {1,...,n}
(n > 2), and the feasible set of utilities is denoted by V', which is a sub-
set of the n-dimension Euclidean space R". A disagreement point is r =
(ri)ien € V, where it is assumed that r; > 0. The bargaining problem con-
sists of the feasible set V' and a disagreement point r. We make the following

assumptions about V.

Assumption 1. The set V is closed, convex and comprehensive, and V'
contains a point y = (y;);en such that y; > r; for i = 1,2,...,n. Moreover,
V' N R} is assumed to be bounded. The boundary 0V N RY is smooth and

nonlevel.

'Miyakawa (2003) has already shown that the (symmetric) Nash bargaining solution
(equivalently, the maximum solution of the Nash social welfare function) is supported by
the limit of equilibria of our noncooperative bargaining procedure in the pure bargaining
case. The connections between the Nash bargaining problem and the Nash social welfare

function have been investigated in Kaneko (1980).
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Note that 0V N R} is smooth if and only if at each y € OV N R}, there
exists a single outward normal direction. In addition, 0V MR} is nonlevel if
and only if the outward normal vector at any point of OV MR’} is positive in all
coordinates. If 0V NR" is smooth and nonlevel, there exists a continuous,
concave and differentiable function on R" such that H(y) = 0 for all y €
OV MR} and that H(y) > 0 forally € VNRY.

The set V' can be interpreted as the feasible set of von Neumann Mor-
genstern utilities in that n individuals are derived from preferences over lot-
teries that satisfy the expected utility assumption. If we assume that ran-
domization on different bargaining outcome is possible and that individuals
can freely dispose of utility, both the convexity and the comprehensiveness
assumptions are naturally satisfied. The smoothness and nonlevelness as-
sumptions are technical. On the other hand, V' also can be interpreted as
the set of non-expected utility levels that they can reach in a particular
bargaining situation. For example, consider situations where n individuals
bargain over the division of a pie of size E. The set of possible agreement
is X = {(@i)ien € R} | Y ,cn ¥ = E}, where x; is the share of the pie to
player i. For each x;, u;(x;) is player i’s utility from obtaining x;, where u; is

a strictly increasing function. Then, the feasible set of utilities is defined as
V ={(yi)ieny €RY | I@i)ien € X,Vi € N,y; < uy(;)}.

If the utility function wu; is continuous, concave and differentiable, the corre-
sponding V' satisfies the above assumptions; i.e., V' is closed, convex, com-
prehensive, smooth and nonlevel.

For each bargaining problem (V,r), we can define the Nash bargaining

solution as follows.

Definition 1. Let (V,r) be an n-person bargaining problem, and 0 = (6;);en
satisfying > .. v 0i = 1 and 6; > 0. A payoff vector y* is called the asymmetric
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Nash bargaining solution of (V,r) with the weight vector 8 if y* is a solution
of the maximization problem:
0;
max | | (y; — ).

eV
v 1EN

Ifg; =1/nforall i =1,2,...,n, the solution y* represents the (symmet-
ric) Nash bargaining solution; thus, [[..x (¥ — ri) > [L;cn (i — i) for all
(yi)ien € V.

Using the notion of function H, we can rewrite the maximization problem

in Definition 1 as
maxH(yi — 7"2-)9" subject to H(y) > 0 and y; > r;, Vi € N.
y

By assumptions of V', the solution y* satisfies H(y*) = 0 and y} > r; for all

1 € N. Then, we obtain the Kuhn-Tucker condition from the maximization

problem:
(yi —r)" = A5—(y") =0, j=1,...,n, (1)
Yi =T ZI;IV 9y;
H(y") =0, (2)

where A is the Lagrange multiplier. From assumptions of V' and the con-
cavity of H(y) (the convexity of V'), it follows that y* is the solution of the

maximization problem if and only if y* satisfies the Kuhn-Tucker condition
(1), (2).
3 Noncooperative Bargaining

We describe a noncooperative bargaining procedure to yield the n-person

asymmetric Nash bargaining solution as the (limit of) equilibria. Let 0 <



p < 1 be a fixed parameter. Then the n-person noncooperative bargaining

model runs as follows.

(i) At the beginning of each round ¢ = 1,2,..., one player is selected as a
proposer according to the probability distribution #. In other words, every
player 7 is randomly chosen as a proposer with probability 6;. The selected

player ¢ proposes a feasible payoff vector in V.

(ii) All other players in N either accept or reject the proposal sequentially.
The responses are made according to a predetermined order over N. If all
members of N\{i} accept, then the game ends with these payoffs. If some
members of N\{i} reject, then the game moves to the next round. With
probability p, negotiations continue in the next round with N under the
same rule as in round ¢, thus, the game returns to (i). With probability
1 — p, negotiations break down and the game ends. Each player ¢ gets a

payoff of r;.

Every player has perfect information about the history of the game play.
We do not consider a time discount. In place of a time discount in our
bargaining model, the probability p represents the cost of delay in agreement.
If p — 1, the cost of delay is very low.

Our bargaining model can be represented as an infinite-length extensive
form game with perfect information and with chance moves. We denote with
G’(p) the bargaining model with a parameter p and a probability distribution
0. A strategy for player i in G?(p) is a sequence o; = {0/}, of mappings,

where o! is the ¢tth round strategy. The tth round strategy o! prescribes a
proposal y! € V as a proposer and a response function assigning “accept” or
“reject” to all possible proposals by other players. For a strategy combination
o = (01,...,0,), the expected payoffs for the players in G?(p) are determined

in the usual manner. We use G? to describe the bargaining model where
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p— 1.
We apply a stationary subgame-perfect equilibrium as a solution concept

to the bargaining model G(p).

Definition 2. A strategy combination o* = (07,...,0%) of G?(p) is said to
be a stationary subgame-perfect equilibrium (SSPE) if it is a subgame-perfect
equilibrium where every player’s strategy is limited to be stationary, i.e., for
every round t = 1,2,..., the tth round strategy of every player does not

depend on any history until round ¢ — 1 and only depends on history within

round ¢.

The concept of an SSPE has been employed in almost all of the literature
concerning the noncooperative multilateral bargaining model: see Chatter-
jee et al. (1993), Hart and Mas-Colell (1996), Okada (1996) among others.
It is well known that in the sequential multilateral bargaining games, many
payoff allocations are supported by subgame-perfect equilibria. For example,
Osborne and Rubinstein (1990) showed the multiplicity of subgame-perfect
equilibria in the 3-person sequential bargaining model. Assuming the station-
arity, we can avoid the multiplicity problem of subgame-perfect equilibria in

the n-person noncooperative bargaining model.

4 Main Theorems

In this section, we state our main theorems. The following theorem states
that when the delay of cost converges to zero; p — 1, the payoff vector at the
asymmetric Nash bargaining solution with weight 6 is realized by the limit of
SSPEs of GY. We can implement the generalized n-person Nash bargaining

solution in a noncooperative manner.



Theorem 1. Let (V,r) be an n-person bargaining problem. Then, for each
p; 0 < p < 1, there exists an SSPE of the game G°(p). Moreover, any SSPE
payoff vector v(p) converges to the asymmetric Nash bargaining solution of

(V,r) with the weight vector 6 as p — 1.

The formal proof of Theorem 1 follows in the next section. We now give
a sketch of the proof. The existence of an SSPE can be proved straight-
forwardly by the fixed point theorem. We next present a “simple” SSPE
strategy for every player. In the SSPE, a proposer offers the other players
their continuation payoffs and obtains the maximum residual payoff herself,
and a responder accepts a proposal if and only if she is herself offered at
least a certain continuation payoff. Using this SSPE, we derive an equations
system that is satisfied by the expected equilibrium payoff vector satisfies.
By virtue of the fact that the dispersion among individual proposals would
vanish as p — 1, we can finally confirm that the limit of SSPE payoff vectors
as p — 1 satisfies the Kuhn-Tucker condition of the maximization problem

to obtain the Nash bargaining solution.

Remark a (one to one) correspondence between the weight parameter 0
in the Nash bargaining solution and the probability distribution 6 in the
noncooperative bargaining procedure. The asymmetric Nash bargaining so-
lution with the weight vector § = (#;,...,6,) is generated as the limit of
SSPE payoff vectors in the noncooperative bargaining game G?(p), where
each player 7 is randomly recognized to make a proposal with probability 6;,
when p converges to one.

Let us next discuss the relationship with the Pareto-efficient allocation.



We can define the Pareto-efficient payoff allocation of (V,r) by

PEP(V) ={v €V | there is no v' € V such that

v; > wv; for all i € N and v, > v; for some i € N}.

Trivially, if v € PEP(V), then v € 0V NR% and v; > r; for all i € N.

The following proposition is well known. It is essential that V' be convex.

Proposition 1. Let (V,r) be an n-person pure bargaining problem satis-
fying Assumption 1. For any v € PEP(V), there is a vector of weights
A= (Ao An) >0, A # 0, such that Y,y MOk > Y ey Akr for all
velV.

It is easy to prove Proposition 1 by the supporting hyperplane theorem.

Here, we omit the proof. We add the following proposition.

Proposition 2. A bargaining problem (V,r) satisfies Assumption 1. Let ©
be a solution of the maximization problem: max, ZkeN ApUg subject tov € V
and v; > r; for all i € N. Then, for some § = (él, . .,én), 0 also become a
solution of the maximization problem:

max H(vk — rk)é’“ subject to v € Vand v; > r; forallie N.  (3)

keN

Proof. All that is required is to construct an objective function J], (v —
7¢)% such that its indifference surface passing through the point 9 comes
into contact with the hyperplane >, Awvr = > .oy AUk Choose 0 =
(6,...,0,) satisfying

S forije Nyi#j and Y 0 = 1.

Uy — 1y
7 ) kEN

Then, the function [, .y (vi — rk)ék would satisfy the required properties. As

a result, ¢ becomes a solution of the problem (3). O
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From Proposition 1 and Proposition 2, it follows that for any © € PEP(V),
there exists a vector 6 = (él, . én) such that [,y (0 —rk)ék > [een (v —
mc)é’e for all v € V. Thus, any Pareto-efficient payoff allocation is the Nash
bargaining solution of (V,r) with some weight vector 6. By Theorem 1, the
Nash bargaining solution of (V,r) with the weight vector # is the limit of
SSPE payoff vectors in the bargaining game model Gé(p) as p — 1.

We then have the following theorem:

Theorem 2. Let (V,r) be an n-person bargaining problem satisfying As-
sumption 1. Every Pareto-efficient payoff allocation of (V,r) is realized by
the limit of SSPEs of the bargaining game Gé(p) as p — 1.

Note that the probability distribution 6 to select a proposer in Gé(p) is
uniquely determined for each Pareto-efficient allocation of (V,r) since V is

convex and closed, and the boundary 9V N is nonlevel and smooth.

5 Proof of Theorem 1

The formal proof of Theorem 1 is separated into the following four lemmas:

Lemma 1, Lemma 2, Lemma 3, and Lemma 4. First we prove the existence

of an SSPE of GY(p).
Lemma 1. There exists an SSPE of the game G’(p) for each 0 < p < 1.

Proof. Let v = (vy,...,v,) be the expected payoff vector in an SSPE of
G%(p). Because the feasible set V is convex and v is a convex combination
of points in V', therefore, v € V. We denote by v_; and r_; the (n — 1)-
dimensional vector constructed from n-dimensional vectors v = (v;);ey and

r = (r;)ieny by deleting the i-th coordinate v; and r;.

11



Suppose that player i becomes the proposer at round 1. First, player ¢
can propose a payoff vector y' = (yi,...,4%) € V. Consider the following

problem:
max y. subject to y; > pvj + (1 — p)r; for j # i, and Y e V. (4)
yl

Because v € V and r € V, the convex combination pv + (1 — p)r € V.
Therefore, there is at least one vector satisfying the constraints of the above
problem. Thus, the constraint set is nonempty. In addition, the constraint
set is also bounded, closed and convex since V is convex and closed and
V' NRY is bounded. Let g7 (pv_; + (1 — p)r_;) be the maximum value that
is attained in the maximization problem. By Berge’s maximum theorem,
g (pv_; + (1 — p)r_;) is a continuous function.

Second, ¢ might make an unacceptable proposal. In this case, ¢ obtains
the expected payoff pv; + (1 — p)r;.

Let us get the expected payoff to player i. For v = (vy,...,v,), we can

define a function by

& (v) = 0ig; (pv—i + (1 = p)r—) + (1 = 0:) (pvi + (1 = p)ri), (5)
for i=1,...,n.
Moreover, let us define a function &(v) = [[,cn&(v). &°(v) is a con-

tinuous function from V to itself, and V' is a compact and convex set.
Then, by Brouwer’s fixed point theorem, there exists a fixed point v*(p) =

(v (p),...,vi(p)) € V such that for all i € N,

vi (p) = & (v (p)) = Oigi (pv* i (p) + (1 — p)r—i) + (1 — 0:) (pv; (p) + (1 — p)7s).

From the fixed point v*(p), we can construct an SSPE of G’(p). Consider

the strategy combination o* = (o7, ..., 07) such that
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(i) every player i proposes a solution of the maximization problem (4), and
(ii) accepts any proposal y; if and only if y; > pvf(p) + (1 — p)r;.

Because a continuation payoff to every player i is pvl(p) + (1 — p)r;, it
is easy to check that o* prescribes every player’s (locally) optimal choice at

his every move in G?(p). Then, o* is an SSPE of G%(p) with the expected

payoff vector v*. O

Lemma 2. In every SSPE o* of G%(p) with the expected payoff vector v,
every player i in N proposes at round 1 a solution y; of the mazimization

problem:
max y! subject to y;- =pvj+ (1 —p)r; forj#i, andy; € V. (6)
y'L
The proposal y; s accepted in o*. Thus, no delay occurs in equilibrium.

Proof. Because V is convex, we must have v € V. In addition, there is some
y € V such that y; > r; for all « € N since r is contained in the interior of
V. Since v € V, y € V, and V is convex, it holds that pv + (1 — p)y € V for

any 0 < p < 1. Because y; > r; for all j € N, we have
pv; + (1 —p)y; > pv; + (1 — p)r; forall j € N.
Thus, there exists § = (9;)jen € V such that
g; > pv; + (1 —p)r; forall j€N. (7)

We note that the expected payoff to player j is pv; + (1 — p)r; when player j
as a responder rejects the proposal. Therefore, at a solution of the problem
(6), proposer i obtains the maximum payoff among the proposals that will be
accepted. In addition, any unacceptable proposal yields to player ¢ at most

pv; + (1 — p)r;. By (7), the payoff to proposer i at a solution of the problem

13



(6) is strictly greater than pv; + (1 — p)r;. Hence, player i will propose a
solution of the problem (6) at round 1.

Since any proposal y; is accepted by every player j € N if and only if
y; > pv; + (1 — p)r;, then a solution of the problem (6) will be accepted. [

Lemma 3. For a v(p) = (vi(p),--.,va(p)), there exists an SSPE of G%(p)
with the expected payoff vector v(p) if and only if the expected payoff vector
v(p) satisfies, fori=1,...,n,

vi(p) = 0ig; (pv—i(p) + (1 = p)r—i) + (1 = 0;)(pvi(p) + (L = p)ri),  (8)
where gf(-) is the mazimum value of the problem:
max y; subject to y; > pv;(p) + (1 —p)rj,j #4,5 € N,and y € V.
y

Proof. (if) We will construct an SSPE of GY(p) with the expected payoff
vector v(p) satisfying (8). Define the strategy combination o such that at
each round ¢, every player i proposes g/ (pv_;(p) + (1 — p)r_;), and accepts
any proposal y; if and only if y; > pvi(p) + (1 — p)r;. As in the proof of
Lemma 1, it is easy to see that o prescribes every player’s optimal choice.
(only-if) It follows from Lemma 2 that every player i gets the payoff
g (pv_i(p) + (1 — p)r_;) if i is the proposer and has pv;(p) + (1 — p)r; if ¢ is
the responder. Recall that player : is selected as a proposer with probability
f; and becomes a responder with probability 1 —6;. In addition, from Lemma
2, the proposal is accepted at round 1. Therefore, by definition of the game
G(p), we can obtain the equation (8). O

Lemma 4. Let v*(p) = (vi(p),...,v:(p)) be an SSPE payoff vector in G°(p)

for each p and v* is a limit point of v*(p) as p — 1. Then, v* is the asym-

metric Nash bargaining solution of (V,r) with the weight vector 6.
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Proof. Let x;(p) denote the payoft g (pv*,(p) + (1 — p)r_;) that every player
i obtains in an SSPE of G?(p) if i is the proposer, i.e., z;(p) = g (pv*,(p) +
(1—p)r_;) for alli € N. By Lemma 2 and Lemma 3, we have that for every
1eN

H(pvi(p) + (L = p)r1,. ., zi(p), - .-, pon(p) + (L= p)ry) = 0. (9)
Let us define the vector
2(p) = (pvi (p) + (1 = p)r1, ., 2ilp), .-, pus(p) + (1 = p)1a).

2% (p) represents the payoff vector proposed by player i at round 1 in an SSPE
of G(p).

By Lemma 3, we can obtain
v; (p) = Oizi(p) + (1 = 0:)(pv (p) + (1 = p)ri), fori=1,2,...,n.  (10)

Rearranging (10), we get

1—-0;
0

_Ll=p
=

z;(p) vi(p) + pvi(p) — (1—p)ry, fori=1,...,n. (11)

Since lim,_,; v*(p) = v* and x;(p) is represented as (11), we have that
lim, 1 z;(p) = v for all i € N. This implies that the proposals by all

players in an SSPE converge to the same payoff vector. Thus,

lim z*(p) = lim 2%(p) = - - - = lim 2" (p) = v". (12)
p—1 p—1 p—1

For any 7,5 € N, i # j, it follows from (9) that H(2*(p)) — H(27(p)) = 0. By

Taylor’s theorem, there exists some 0 < ¢ < 1 such that

~ B2 T (1 (p) + (1 — )2 () = 0. (13)



By (12) and (13), we can obtain, as p — 1,

vl —r;0H v —r; OH - o
| )= ) N 14
0; Oz, (v) 0, Oz (v*), 4,5 € N,i#j, (14)

Thus, v* satisfies the Kuhn-Tucker condition (1), (2) of the maximization
problem for the Nash bargaining solution of (V,r) with the weight vector
6. O

By combining Lemma 1 with Lemma 4, we can obtain Theorem 1.
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