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Abstract

In this paper, we develop a noncooperative bargaining model for
forming jurisdictions and sharing the cost of a local public good. We
derive a necessary and sufficient condition for the existence of a pure-
strategy, Pareto-efficient stationary subgame perfect equilibrium when
the discount factor is close to unity. In this equilibrium, individuals
with similar tastes cluster together in their local jurisdiction. The
relationship to Tiebout’s hypothesis is examined.
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1 Introduction

In this paper, we develop a noncooperative bargaining model of endogenously
formed jurisdictions in a local public good economy that has a finite num-
ber of individuals. There are many studies on local public good economies.
In his seminal paper, Tiebout (1956) asserted that in a local public goods
economy, individuals are forced to reveal their true preferences for the public
goods through their choice of jurisdiction and that public goods are efficiently
provided by each jurisdiction. Choosing jurisdictions to reveal their prefer-
ences for the public goods implies that individuals are ‘voting with their feet.’
Moreover, he asserted that individuals are segregated into jurisdictions ac-
cording to their preferences for local public goods through voting with their
feet. Then, in equilibrium, each jurisdiction comprises individuals with simi-
lar tastes. In formal terms, Tiebout hypothesized that in a local public goods
economy, there exists an equilibrium and it is Pareto efficient. Tiebout’s pa-
per stimulated much theoretical interest because his notion of equilibrium
is not easily formalized. Bewley (1981) doubted the validity of Tiebout’s
assertion. He provided counter-examples to both existence and efficiency of
equilibrium. It was widely recognized that an equilibrium might not exist
because in a local public goods economy with a finite number of individuals,
individuals who move from one jurisdiction to another have nonnegligible ef-
fects. This is known as the integer problem (see Wooders, 1978). To avoid the
integer problem, many researchers assumed that there is a continuum of in-
dividuals or a large finite number of individuals in the economy (Ellickson et
al., 1999, 2001, Greenberg, 1983, Hammond et al., 1989, and Wooders, 1980).
In this paper, we analyze an economy with a finite number of individuals.
Moreover, we assume that jurisdictions are endogenously formed.

Research on finite local public goods economies was initiated by Guesnerie
and Oddou (1979, 1981), who assumed that jurisdictions are endogenously
formed. They analyzed a finite local public goods economy in which the cost
of the public good in each jurisdiction is financed by a proportional income
tax. They introduced the notion of a C-stable solution. A C-stable solution
is essentially a ‘core’-like allocation. As is the core, a C-stable solution is
immune to threats of secession by coalitions. Guesnerie and Oddou (1979)
demonstrated the existence of a C-stable solution when there are up to three
individuals. Guesnerie and Oddou (1981) derived sufficient conditions for
the formation of a grand coalition. Greenberg and Weber (1986) showed that
there is a C-stable solution for any number of individuals under restricted
preferences domain. In their model, the ordering of all individuals can be
described by a single parameter and individuals with similar tastes cluster
together in equilibrium. Rather than adopting a cooperative game approach



such as the core, Konishi et al. (1998) defined a normal-form game in which
individuals choose levels of the public good. They showed that there exists a
pure-strategy Nash equilibrium in a finite local public goods economy when
there is a poll tax scheme. In addition, the Nash equilibrium does not satisfy
a weak efficiency condition. In these studies of a finite local public goods
economy, a tax scheme for financing the cost of the public good is restricted to
a proportional income tax or a poll tax. Furthermore, congestion effects are
ignored'. When there is a proportional income tax or a poll tax, individuals
who move from one jurisdiction to another have nonnegligible effects on the
tax base of both jurisdictions. These effects generate discontinuous jumps
in the payoffs. Thus, fixed tax schemes may prevent equilibrium to exist.
In this paper, we incorporate an arbitrary tax scheme. That is, the cost-
sharing rule is endogenously determined by negotiations among members
of each jurisdiction. FEach jurisdiction can be considered as the group of
individuals that can make binding agreements about the level of the local
public good and the associated cost-sharing rule. Moreover, we consider
congestion effects.

We examine a local public goods economy with a finite number of indi-
viduals. First, we present a noncooperative bargaining model for forming
jurisdictions and sharing the cost of the local public good. Next, we pro-
vide a necessary and sufficient condition for the existence of a pure-strategy,
Pareto-efficient stationary subgame-perfect equilibrium (SSPE). The condi-
tion can be understood with relation to the C-stable solution. It is assumed
that the preferences domain is restricted to that represented by the quasi-
linear utility function. Individuals can be ordered according to the strength
of their preferences for the local public good. In addition, we incorporate
‘anonymous crowding,’” under which each individual cares only about the
number of agents in the same jurisdiction, but not about their characteris-
tics. Given these assumptions, a Pareto-efficient coalition structure implies
a partition of the set of individuals to coalitions that comprise individuals
with similar tastes. A Pareto-efficient SSPE in our model would have the
features described by Tiebout (1956). Focusing on the necessary and suffi-
cient condition for the existence of a pure strategy, Pareto-efficient SSPE, we
investigate the equilibrium coalition structure and examine how this relates
to Tiebout’s hypothesis.

Mutuswami et al. (2004) also used a noncooperative bargaining model to
analyze a local public goods economy. They incorporated congestion effects
and an arbitrary tax scheme. Hence, their framework is are similar to ours.

!Conley and Smith (2005) give a comprehensive survey of the many contributions in
various forms of crowding or congestion effects.



However, our noncooperative extensive-form game is novel. Their bargain-
ing game model is a ‘bidding game’ in which individuals bid for the right to
propose a coalition (jurisdiction) and a production plan for that coalition’s
public good. They propose the bidding game as a mechanism of generating
efficient outcomes in the local public goods economy. By contrast, we use a
noncooperative coalitional bargaining game model with random proposers,
provided by Okada (1996). The model extends the Rubinstein’s alternating-
offer model to n-person coalitional bargaining. The key feature of the model
is that a proposer is randomly selected with equal probability among active
players in each round. This feature makes the model tractable and enables us
to investigate the equilibrium coalition structure in economies with heteroge-
neous individuals. It is well known that even if individuals are homogeneous,
the equilibrium coalition structure may be inefficient and complex in a fixed-
order protocol bargaining model (see, for example, Chatterjee et al., 1993,
and Ray and Vohra, 1999).

We assume the same bargaining procedure as does Okada (1996). How-
ever, Okada only considered the bargaining situations described by super-
additive games with transferable utility (TU and superadditive game). As
shown later (Example 1), a game associating to a local public goods economy
with congestion effects may not belong to the category of TU and superad-
ditive games. Therefore, Okada’s theorems cannot directly apply to a local
public goods economy. We develop a new theorem for characterizing the sit-
uations in which the efficient coalition structure is attained. The generalized
theorem relating to the existence of an SSPE in a game with a TU and non-
superadditive game and related theorems are given in our companion paper,
Miyakawa (2005).

The paper is organized as follows. In Section 2, we defines a local pub-
lic good economy and introduces our noncooperative coalitional bargaining
model. In Section 3, we characterizes the efficient coalition structure and de-
rive a necessary and sufficient condition for the existence of a pure-strategy
and efficient SSPE. In Section 3, we discuss the equilibrium coalition struc-
ture and its relationship to Tiebout’s hypothesis. The proof of Theorem 2 is
in the Appendix.

2 Local Public Good Economy

2.1 Basic framework

We consider an economy consisting of n individuals, the set of which is de-
noted by N = {1,...,n}. There is one public good and one private good. We



assume the constant returns to scale technology of the public good. In par-
ticular, the production technology permits the transformation of one unit of
private good into one unit of public good. Each individual i € N is endowed
with a positive amount I; of the private good. Here, initial endowments of
the private good is identical for all individuals?, i.e., I; = I for all i € N.
Individual ¢ in coalition S has preferences, represented by the quasi-linear
utility function with congestion effects:

ui(g) = c(|S]) + =, (1)

where u;(g) is utility from the local public good g, and z; is her private
good consumption. The term —c(]S|) is disutility from congestion, where
|S| denotes the cardinality of the coalition S. The function u; and ¢ are
assumed to be continuous and increasing. Note that the level of congestion,
¢(|S]), depends only on the number of individuals in coalition S and is com-
mon to all members of S. Models of a local public goods economy with this
type of congestion, which is called ‘anonymous crowding’, are provided by
Scotchmer and Wooders (1987), and Konishi, Le Breton and Weber (1997).
We assume that the utility of the public good is separable from congestion
effects and that the disutility from congestion is common among the mem-
bers of the coalition. These assumptions are very restricted ones. Due to
these assumptions, however, all individuals can be ordered according to the
strength of their preferences for the public good. Formally, we assume the
utility function of the local public good for each individual to satisfy the
following assumption;

Assumption 1 (Preserving the Order of Players). If i < j for any two
player 7,5 € N = {1,2,...,n}, then the inequality u;(g) < u;(g) holds for
all ¢ € R;. Moreover, the difference u;(g) — u;(g) is strictly increasing with
g if u;(g) # uilg).

The public good is produced by each coalition. A coalition can be re-
garded as a local jurisdiction. The cost of public good can be financed
through an arbitrary tax on the members of coalition. The coalition alone
cannot benefit from the public good produced by other coalitions. Thus,
there is no spillover effect between the local jurisdictions. In previous studies
in a local public goods economy, cost sharing rules (tax schemes) were re-
stricted to a proportional income tax or a poll tax (see Guesnerie and Oddou,
1979 and 1981, Greenberg and Weber, 1982 and 1986, Konishi, Le Breton

2Because we assume that each individual has a quasi-linear preferences, the assumption
of identical endownments is not crusial for our results. Even if individuals have different
incomes, the same results are obtained.



and Weber, 1998). We allow an arbitrary tax scheme here. The tax burdens
to each individual in the coalition are determined by negotiations among the
members of the coalition. We will construct a noncooperative bargaining
game model to determine the coalition and the cost-sharing of the public
good, and investigate a Nash equilibrium point satisfying some properties.
The coalitional form game (N, v) to describe the bargaining situation is con-
venient to derive the equilibrium of the noncooperative game.

The coalitional form game (N,v) associating to the local public good
economy is defined by; for each S C N,

I;IG%X{ZUZ —|5]e |S|)+|5|T—9}- (2)

€S

The value v(S) denotes the maximum total payoff of the members of coalition
S by producing the local public good. Since each individual has a quasi-
linear utility function, one unit of utility for a consumer can be tranferred
to another consumer through reallocation of the private good. Therefore,
the game (IV,v) is a game in coalitional form with transferable utility (TU
game).

Definition 1. A TU game (N, v) is called superadditive if, for all S,T C N,
SNT =0,
v(S)+v(T) <wv(SUT).

Definition 2. The grand coalition NN is called universally efficient if

K
N) > Zv(Sk), for every partition {Si,..., Sk} of N.
k=1

It is easy to show that if the grand coalition is universally efficient then
it is superadditive. In our game defined by (2), it is not necessarily superad-
ditive and N is not universally efficient.

Example 1. The economy consists of four individuals N = {1,2, 3, 4}.
Every individual has an income of 5, i.e., I = 5. Utility functions of the
public good are: u;(g) = u2(g) = 4logg, us(g) = us(g) = 2logg, where log
represents the natural logarithm. Congestion costs depending on the number
of individuals are given by: ¢(1) =1, ¢(2) = 3, ¢(3) = 10, and ¢(4) = 15. By
definition of (2), the characteristic function for coalition {1} and {2} is

v({1}) = v({2}) = max(4logg — c(1) + I —g).



Because the maximum is attained at ¢ = 4, it is reduced to
v({1}) = v({2}) =4logd —1+5—4=_8log?2.

Similarly, v({3}) = v({4}) = max,(2logg —c(1) + I — g). We can obtain the
maximum at g = 2. Then

v({3}) =v({4}) =2log2 —1+5—2=2log2 + 2.

By carrying out the same procedures, we can derive other characteristic func-
tions as follows:

v({1,2}) = max (4logg +4logg — ¢(2) + 2I — g)
9
=4log8+4log8 —3+10 — 8 =24log2 — 1,
v({3,4}) = max (2logg + 2logg — ¢(2) + 21 — g)
g
—2logd +2logd — 3+ 10 — 4 = 8log2 + 3,
U({17273}) = U({17274}) = max (810gg+210gg - C(S) + 31 - g)
g
=8logl0+2log10 — 10+ 15— 10 = 10log 10 — 5,
o({1,3,4}) = v({2,3,4}) = max (41og g + 41og g — e(3) + 3 — g)
g

—8log8 — 10+ 15 — 8 = 24log2 — 3,
max (8logg + 4logg — ¢(4) + 41 — g)
9

v({1,2,3,4})
= 12log12 — 15+ 20 — 12 = 12log 12 — 7.

Since log2 = 0.6931---, log10 = 2.3025---, and log12 = 2.4848 - --, then
the values of the characteristic function are v({1}) = v({2}) = 5.5448 - - -,
v({3}) = v({4}) = 3.3862- -, v({1,2}) = 15.6344 - - -, v({3,4}) = 8.5448 - - -,
v({1,2,3}) = v({1,2,4}) = 18.025- -, v({1,3,4}) = v({2,3,4}) = 13.6344 - - -,
and v({1,2,3,4}) = 22.8176---. As a result, we obtain

v({1,2}) + v({3}) = 19.0206 - - - > v({1,2,3}) = 18.025 - - - ,

v({1}) +v({3,4}) = 14.0896 - - - > v({1,2,3}) = 13.6344 - - - |

v({1,2}) + v({3,4}) = 24.1792 - - - > v({1,2,3,4}) = 22.8176 - - - .

Thus, the above game is not superadditive and N is not universally efficient.
If there is no congestion effect, the characteristic function is given by
U(S)Zglg{Zui(g)— ISII—Q}- (3)
i€s

In this case the game is superadditive and the grand coalition is universally
efficient.



2.2 Noncooperative coalitional bargaining

We now define a noncooperative bargaining game model for constituting
local jurisdictions. We have to adopt the bargaining procedure based on the
extensive form game in order to determine both the coalition structure and
the tax burden of each jurisdiction endogenously. In the bargaining game,
the individuals are partitioned into local jurisdictions, and each jurisdiction
produces his own public good and shares its production costs among the
members of the coalition. Since all cost sharing rules are allowed (a tax
scheme is not restricted at all), it is possible for the members of the local
jurisdiction to select any feasible payoff distribution in the coalition. In
addition, every proposer inevitably chooses the level of public good as to
maximize the sum of payoffs (money) for the members of the coalition S.
Thus, the problem of determining a coalition, the level of local public good
and its cost-sharing is reduced to the problem of choosing a feasible payoff
allocation y° € v(S).

A payoff vector for a coalition S is denoted by y* = (y7)ies € R/, A
payoff vector y° for S is called feasible if

>yl <o(s).

1€S

We denote by Y the set of all feasible payoff vectors for S.

Our noncooperative bargaining model proceeds as follows.

At every round t = 1,2, ..., one player is selected as a proposer with equal
probability among all player still active in bargaining. Let N be the set of
all active players at round ¢, where the bargaining starts with all players at
round 1, i.e., N! = N.

The proposer ¢ chooses a coalition S with ¢ € S € N* and a payoff vector
y® € Y. All other players in S accept or reject the proposal sequentially.
If all the other players in the coalition accept the proposal, then it is agreed
upon and enforced. This implies the emergence of a local jurisdiction which
consists of the members of coalition S and has a local public good and a
cost sharing scheme that yield the payoff vector y°. The remaining players
outside S can continue negotiations at the next round. Thus, N = N¥\S.
If some players in S reject the proposal, then negotiations go on to the
next round and a new proposer randomly selected by the same rule. In this
case, Nt*1 = N'. The bargaining continues until there exists a subset S
of active players such that v(S) > 0. Consequently, the individuals in N
are partitioned into local jurisdictions. We can regard a coalition as a local
jurisdiction and a coalition structure of NV as a jurisdiction structure.



When a proposal (S,y°) is agreed upon at round ¢, the payoff of every
member i € S is §' 'y?, where § is a discount factor, and 0 < § < 1. For
players who do not belong to any coalitions, their payoffs are assumed to be
zero. Every player has perfect information.

Our bargaining procedure is same as in Okada (1996). Because a proposer
is randomly selected, his model is called “random proposer” model. He,
however, considered only a bargaining situation described by a superadditive
coalitional game. The game to a local public good economy is not necessarily
superadditive as shown in Example 1.

We denote by T'(§) the bargaining model with the player set S. T'9 is
used when the discount factor § converges to one; I'(6) — I' as § — 1.
Let o; be a strategy for player i in I'V(§) and o = (04,...,0,) be a strategy
combination.

We shall adopt the following solution concept.

Definition 3. (i) A strategy combination o* of the game I'V(§) is called a
stationary subgame perfect equilibrium point (SSPE) if it is a subgame perfect
equilibrium point with the property that for every t = 1,2, ..., the ¢th round
strategy of every player depends only on the set N! of all players active at
round ¢. (ii) A strategy combination o* of the game I'V is called a limit SSPE
if it is a limit point of SSPEs of 'V () as § — 1.

For an SSPE o of 'V () and every coalition S C N, let v° = (v7);cs
denotes the expected payoff vector of players for o in the subgame I'°(4),

and 0% = (T7);cs be the collection of coalitions T;° proposed by every player

i on the plays of o in ['(§). We call the collection {(v°,0%) | S C N} the
configuration of the SSPE o.

3 Main Results

3.1 Efficiency and Existence

Let characterize the efficient coalition structure in our model. We denote the
set of all partitions of S by

k=1

K
H(S):{{Sl,,SK}‘ USk:S, andSiﬂSj:(/),iséj}.



A element 7 = {5y, ..., Sk} € T1(S) is called a coalition structure of S. For
a given coalition structure 7 = {Si,..., Sk}, we can define the function

V(%8) =) v(Sk).

k=1
Then, the notion of efficient coalition structure is defined as follows.

Definition 4. A coalition structure 7 is called an efficient coalition structure
of S if, for all «" € TI(S), V(m; S) > V(n'; S).

An efficient coalition structure of S always exist in a game with trans-
ferable utility. But multiple coalition structures may be efficient. It is easy
to see that an efficient coalition structure of N is {/N} in the case where the
grand coalition is universally efficient.

Next let us define the notion of connectedness about a coalition. Note
that player i and player j are ordered by ¢ < j only if u;(g) < u;(g) or
ui(g) = u;(g) for all g.

Definition 5. A coalition S is called connected if, for any three players
i,j,k with i < j < k and u;(g) # ug(g), i,k € S imply j € S. Moreover, the
connected coalition structure of S is the partition of S to connected coalitions.

In the connected coalition structure, each jurisdiction (coalition) is an
interval of players, i.e., individuals with similar tastes for the public good
cluster together.

We can prove that an efficient coalition structure is connected in our
setting.

Theorem 1. An efficient coalition structure of S is connected in the local
public good economy.

Proof. Let n*(S) = {T1(S),...,Tx(S)} be an efficient coalition structure
of S. Suppose that the efficient coalition structure is not connected. By
definition, there exists T(S) € 7*(S) such that, for some i,j € Ti(5), i <
h < jand h ¢ Ty(S). Let T;(S) be the coalition that includes individual h
and let ¢;(S) and g¢;(S) be the public good levels which achieve

v(T(S)) = max Y tumle) = | Te(S)|e(|Te(S))) — g | , and

mGTk(S)

v(Te(S)) = max Y uml9) = ITS)e(TS)) — g | »

mGTg(S)

10



respectively.

Consider the case of g;(S) < g;(S). Let replace individual j from coali-
tion T (S) to T;(S) and do individual h from T(S) to Tx(S). Thus, Ty (S)
(T2(5)) changes to (T, (S)\{h}) U{7} (Te(S)\{7})U{h}). If gi(S) and g; (S)
are fixed, then the value of

> um(9¢(S)) = [(T(SON{AH V{7 He((Te(S)\{h) UL H) —9:(S)
me (T, ($)\{h})U{s}

is larger than that of v(7,(S)) by (u;(g;(S)) — un(g;(S))). In addition, the
value of

> um (95 (5)) = [(T(SN{THULAHe([(T(SH\{THULRH) — 95 (5)
me (T ($)\FHU{h)

is smaller than v(7}(S)) by (u;(gi(S)) — un(gi(5)))-

By Assumption 1, (u;(g;(S)) — un(g;(S))) is larger than (u;(g;(S)) —
un(g;(S))). This contradicts the assumption that 7*(S) is an efficient coali-
tion structure.

Next consider the case of g;(S) > ¢;(S). In this case let us transpose
individual i from T} (S) to T,(S) and individual A from T;(S) to Tx(S). Thus,
we permute between ¢ and h in a coalition structure 7%(S). Then, even if the
public good level remains at g;(5), the value of

> um(9%(5)) = (T (SN U {AHe(|(TR()\{i}) ULR}) — 95 (5)
me (T (9)\{i})u{h)

is larger than v(T3(5)) by (ur(g;(S)) — ui(gi(S))). On the other hand, if
g;(S) is fixed, the value of

> um (97 (9)) = [(Te(S)\{h}) UL e((Te(S)\{R}) U{E}]) — g7 (5)

me(Ty(S)\{hHu{i}

is smaller than v(7;(S)) by (un(g;(S)) — ui(g;(S))). The former exceeds the
latter by Assumption 1. Thus, coalition (7% (S)\{i})U{h} and (Tp(S)\{h})U
{i} realize the larger worth in aggregate than v(7}(S)) + v(7(S)). This is a
contradiction. O

Theorem 1 says that a Pareto efficient allocation leads to the coalition
structure in which individuals with similar taste for the public good is cluster-
ing together. We are now ready to investigate an SSPE in which an efficient
allocation is realized.

11



Definition 6. An SSPE o of the game I'V(§) is called subgame coalitional
efficient if, for every subgame ['*(§), every player i € S proposes the coalition
which is a component of the efficient coalition structure of S in . A limit
subgame coalitional efficient SSPE of I'V is defined to be a limit point of
subgame coalitional efficient SSPEs of 'V () as § — 1.

The notion of subgame coalitional efficiency is a generalization of subgame
efficiency in Okada (1996). When a game is superadditive, every player
proposes the full coalition S in a subgame coalitional efficient SSPE o for
every subgame I'(§). This implies the subgame efficiency. Note that the
notion of subgame coalitional efficiency is stronger than the Pareto efficiency
of the expected payoff vector for n players in TV (§). It requires that in all
subgames I'(§), S C N, the efficient coalition structures must be established.

Tiebout (1956) argues that, if there were enough jurisdictions, individuals
would choose their most preferable jurisdictions as a place in which to live
(voting with their feet), and such a voting generates the Pareto efficient allo-
cation. Furthermore, he asserts, because individuals reveal their preference
for local public goods by choice of jurisdiction, all those deciding to live in
the same jurisdiction would have the similar tastes. Theorem 1 shows that
in our local public good economy an efficient coalition structure implies clus-
tering of individuals with similar tastes. By definition, the efficient coalition
structure can be realized in a subgame coalitional efficient SSPE. We inves-
tigate the situation where a discount factor ¢ is sufficiently close to 1. In this
case, the ex-ante expected equilibrium payoff vector converges to the ex-post
expected equilibrium payoff vector because all individuals propose the same
proposal.

In addition, we would like to guarantee the existence of a pure-strategy
Nash equilibrium, rather than a mixed-strategy equilibrium. If mixed strate-
gies about the choice of a coalition is allowed, the existence of an SSPE
can be proved in a noncooperative bargaining game model with the general
non-superadditive TU game, see our companion paper, Miyakawa (2005).
Non-existence of equilibrium in a local public good economy comes from the
discrete choice of a jurisdiction to live, which is called ‘integer problem’.
Allowing mixed strategies about the choice of a jurisdiction is not a direct
solution of the integer problem. Therefore, we specify the necessary and
sufficient condition for the existence of a pure-strategy SSPE with subgame
coalitional efficiency. A necessary and sufficient condition for the existence
of a pure-strategy and subgame efficient SSPE has been provided by Okada
(1996). But he only considered the bargaining situation described by a TU
and superadditive game. The local public good economy may become a
TU but non-superadditive game. Then, Okada’s condition does not directly

12



apply to our bargaining situation.

For each S C N, we represent the efficient coalition structure of S by
m(S) = {S7(5),...,S%s(S)}. In a TU and non-superadditive game, the
following theorem is established :

Theorem 2. There exists a pure-strateqy and limit subgame coalitional effi-
cient SSPE of TN if and only if the game (N,v) satisfies; for all S C N,

v(51(5)) ™ v(Si(S))
o ou- = . max v(T) — y; | sub.to y; = —arronT (4)
IST(S) T rener jET,j#i ’ T1SiS)
JESHS)YNT, k=1,2,...,K°, forallic S;(S),

v(Sis(5)) > max (v(T) - Z yj> sub.to y; = o(5i(5))

|Sks(S)| — TeNaer Pl 1S:(S)]
JESHS)YNT, k=1,2,...,K°, foralli€ Sis(9).
The expected equilibrium payoff vector (v}f)jeg in T is given by

v(Si(5)) v(Sks(S))
Uy = —airanrs ViEST(S), ..U = =
1S (9)] ' |S5es ()]
Proof: See our companion paper, Miyakawa (2005). We also give a proof in
Appendix in order to make this paper self-contained . [

L VieSs(S).  (5)

The local public good economy belongs to a class of TU and non-superadditive
game. So, we can applies Theorem 2 to the local public good economy.

Theorem 2 shows that there exists a pure strategy and limit subgame
coalitional efficient SSPE if and only if each individual obtains the maximum
payoff by forming coalition S} (S) under the condition that other individual j
must be guaranteed to get his payoff v(S;(5))/|S;(S)|, where S;(S) € 7*(S5)
and j € S;(S5), if j is the member of coalition. A pure-strategy and limit
subgame coalitional efficient SSPE in the local public good economy realizes
a Pareto efficient allocation and a coalition structure such that individuals
with similar taste cluster together. Note that, in an SSPE, individual 7 € S},
k=1,2,..., KV, shares the worth v(S}) equally among the members of the
coalition S, where S} € 7*(N).

Moreover, the condition says that there exists no group of individuals
who can benefit by deviating from the efficient coalition structure 7*(S).
This means that the payoff vector (5) is in the C-stable solution defined by
Guesnerie and Oddou (1979, 1981). Note that a C-stable solution here is not
coincident with a C-stable solution in Guesnerie and Oddou’s model because
they restrict a tax system to a proportional income tax or a equal share tax.
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3.2 Coalition structure

We examine the equilibrium coalition structure. First let give a simple exam-
ple in order to clarify the situation that satisfies the condition (4) in Theorem
2.

Example 2. Consider a set of individuals N = {1,2,3} and an income
level I = 8 for all individuals. The congestion costs are assumed to be
c(1) =0, ¢(2) =2, and ¢(3) = 10.

(i) If ui(g) = u2(g) = 6logg and uz(g) = 2logg, then, the values of
characteristic function are given by

v({1}) = v({2}) = 610g6 +8 — 6 = 12.7502 - - - |

v({3}) =2log2+8 — 2 = 7.3862- - - ,

v({1,2}) = 12log12 — 2+ 16 — 12 = 31.8176- - - ,

v({1,3}) = v({2,3}) = 8log8 — 2+ 16 — 8 = 24.6944 - - - ,
(

v({1,2,3}) = 14log 14 — 10 + 24 — 14 = 36.946 - - - .
In this case, the efficient coalition structure is {{1,2},{3}}. Therefore, we
can calculate the equilibrium payoff vector vj = v({1,2})/2 = 15.9088 - - -,
vy = v({1,2})/2 = 15.9088---, v; = v({3}) = 7.3862---. It is sufficient
to check that the above payoff for each individual is greater than the payoff
obtained by proposing other coalition while other individuals are conditional

to obtain the continuation payoffs. Let us consider ¢ = 1. When the proposed
coalition is T' = {1, 2, 3}, individual i = 1 has

v({1,2,3}) — v} — v} = 13.651 - - .
When T = {1, 3}, individual 7 = 1 can obtains
v({1,3)) — vl = 153082 - - .

If T = {1}, individual ¢ = 1 has 12.7502---. All values are smaller than
vj = 15.9088. Thus, the condition 4 in Theorem 2 for individual i = 1
is satisfied. The same calculation is applied to individual © = 2. So, the
condition for individual © = 2 is also satisfied. Next consider ¢ = 3. If
individual ¢ = 3 proposes the coalition 7' = {1, 2, 3}, he obtains

v({1,2,3}) —vj —v; =6.3196- - - .
If either T' = {1,3} or T = {2, 3}, then, i = 3 has

v({1,3}) — vF = v({2,3}) — v} = 7.3812....
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These payoffs are smaller than v; = 7.3862. The condition is also satisfied
for ¢ = 3.

(ii) Next, assume that ui(g) = u2(g) = 6logg, and u3(g) = 3logg. The
diversity of the preferences for the public good is narrower than case (i)
because individual 3 is changed from 2logg to 3logg and individual ; = 1
and ¢ = 2 are unchanged. The efficient coalition structure is {{1,2}, {3}}.
The payoffs to check the conditions are v} = vy = v({1,2})/2 = 15.9088 - - -
and v = v({3}) = 8.2958 - - . Focus on individual i = 1. When T = {1, 3},
individual ¢ = 1 has

v({1,3}) —vi =16.479--- .

This is greater than v{ = 15.9088---. The condition for individual : = 1 is
violated.

(iii) Finally, assume that u;(g) = 7logg, us(g) = 6logg, and uz(g) =
2logg. In this case, the diversity of the preferences for the public good is
wider than case (i). The efficient coalition structure is also {{1, 2}, {3}}. The
targeted payoff vector is v; = v; = v({1,2})/2 = 16.1712 and v = v({3}) =
7.3862---. Check the condition for individual 7 = 1. If individual : = 1
proposes T' = {1, 3}, then he can obtains

v({1,3)) — vl = 17.3886 - - - .
The condition (4) is not satisfied.

Example 2 shows that the condition (4) in Theorem 2 is very sensitive
and is difficult to be satisfied.

Next let us consider the case without congestion effects. In this case
the game becomes superadditive. If a game is superadditive, Theorem 2 is
reduced to the next corollary. This corollary is same as Theorem 3 in Okada
(1996).

Corollary 1 (Okada (1996)). There exists a limit subgame efficient (pure
strategy) SSPE of TN uniquely if and only if the game satisfies
o(S) _ v(@)

18T 2T for all coalitions S and T of N with T C S. (6)

The expected equilibrium payoff vector v° = (v );cs in every subgame T'%(6)

is given by (v(S)/|S],-..,v(S)/|S])-
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According to Corollary 1, the full coalition may not be formed even if
there is no congestion and no restriction on a tax scheme (that is, the game
is supperadditive and the grand coalition is universally efficient). Strategic
coalition formation is a source of inefficiency in the local public goods econ-
omy. Let us give an example where the condition in Corollary 1 does not be
satisfied.

Example 3. Consider N = {1,2,3} and u1(g) = u2(g) = 8logg, us(g) =
2logg. Every individual has an income of 10, i.e., I = 10, and there is no
congestion cost; ¢(1) = ¢(2) = ¢(3) = 0. We can easily derive the following
characteristic functions:

(1) =v({2}) = 241log2 +2 =18.6334- - -

{3}) =2log2+8=19.3862" -,

{1,2}) = 64log2 + 4 = 48.3583 - - -

{1,2,3}) = 18(log 2 + 2log 3) + 12 = 64.0254 - - - .

v

v

v

A~~~ I/~

v

Then v({1,2,3})/3 < v({1,2})/2. Although the game is superadditive, it
does not satisfy the condition in Corollary 1.

If all individuals are identical and there is no congestion, the condition
(6) is satisfied. Thus, the grand coalition is formed in the equilibrium. This
result is in contrast with one provided by Chatterjee et al. (1993) and Ray
and Vohra (1999). In their model the grand coalition is not necessary formed
even if all individuals are identical, which is caused by the fixed proposal order
over the players. On the other hand, the grand coalition is formed in the
random-proposer model.

3.3 Discussion about Tiebout’s Hypothesis

In this paper, we present a noncooperative bargaining model for forming
jurisdictions and for sharing the cost of the local public good. We focus on
a pure strategy, limit subgame coalitional efficient SSPE in the bargaining
game. This SSPE generates the Pareto efficient allocation and leads to a
cluster of individuals with similar tastes of the public good. Tiebout (1956)
asserted that in a local public goods economy, there exists an equilibrium
and it is Pareto efficient. Moreover, he argued that the true preferences
of individuals for the public goods is revealed through the mechanism of
the ‘voting with their feet.” We explain how our results relate to Tiebout’s
assertions.
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(i) Does Theorem 2 support the Tiebout’s assertion? The answer is neg-
ative. Theorem 2 clarifies the necessary and sufficient condition for the exis-
tence of a pure-strategy, limit subgame coalitional efficient SSPE in a local
public good economy with a finite number of individuals. Although a pure-
strategy, Pareto-efficient SSPE in our model has the features described by
Tiebout, the necessary and sufficient condition for its existence is unlikely to
be satisfied. Example 2 indicates that the condition (4) is only satisfied in ex-
ceptional cases. Therefore, Theorem 2 shows that the equilibrium outcomes
described by Tiebout are unlikely to emerge even when the formation of the
jurisdiction and cost-sharing rules for the public good are endogenenously
determined through negotiations.

(ii) Tiebout emphasized that preferences for the public good are revealed
through the choice of the jurisdictions. A key feature of Tiebout’s model is
that inhabitants have free mobility. However, we treat a local jurisdiction as
the group of individuals that can make binding agreements about the level of
the public good and its associated cost-sharing. In particular, cost sharing is
determined by unanimity among members of the jurisdiction. Personal tax
burdens are determined by cotracts between individuals and the jurisdiction.
Hence, the aspects of free mobility disappear in our model. If the cost-
sharing rule takes a form of a proportional income tax or an equal share
tax, the notion of free mobility can be introduced even in the coalitional
bargaining model. This issue is for the future research.

(iii) As already mentioned, the notion of subgame coalitional efficiency
is stronger than the Pareto efficiency. Tiebout only required the Pareto
efficiency for an equilibrium outcome. If the condition (4) is satisfied, there
is a subgame coalitional efficient SSPE. Therefore, the condition (4) might
be unnecessarily strong. We have a room for weaken the condition to achieve
the Pareto efficient allocation in equilibrium.
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Appendix

Proof of Theorem 2. We provide two lemmas before giving the proof of
Theorem 2. In addition, we focus on a class of payoff configuration in these
lemmas.

Definition 7. A payoff configuration {v° | S C N} is called feasible in the
efficient coalition structure 7*(S) = {S7(S5), ..., Sys} if, for every S,

> vl <u(Si(9), (=1,..., K"

JESF(S)

The first lemma shows that, in every pure strategy SSPE those payoff
configuration is feasible in the efficient coalition structure, an agreement is
made in the first round. We have to restrict a class of SSPE to prove no
delay of agreement in equilibrium. If a game is superadditive, this restriction
is unnecessary; no delay occurs in equilibrium, see Okada (1996).

Lemma 1. In every pure strateqgy SSPE o of TN(8) with {(v°,0°) | S C
N} such that the payoff configuration is feasible in the efficient coalition
structure, every player i € N proposes at round 1 a solution (S;,y>) of the
mazimization problem:

s (U(s> ¥ y) 7
Y jES,j#i
subject to yj. > 51}?7, forall j € S,7 # 1,
Ses,;.

Moreover, the proposal (S;,y°) is accepted in o.

Proof. Let ' = (z%,...,z") be the expected equilibrium payoff vector when

player i becomes the proposer at round 1. By definition of TV (4), v}¥ =

> wen 2¥/n for all i € N. We denote by m’ the maximum value of (7).

We will prove that x} = m’.

(z¢ < m?): Suppose that player i proposes (S,y”) at round 1 such that
y? > m'. Since m' is the maximum value of (7), for some j € S with j # i,
yf < 5UJN. Let j* be the last responder of such a kind. In equilibrium
the following is possible: (i) some responder after j* reject i’s proposal, and
(ii) otherwise. If player j accepts the proposal in the case of (ii), then the
proposal is agreed upon and player 5 obtain yf* less than his continuation

payoff 5U§V. Therefore, it is optimal for j* to reject i’s proposal. Thus, i’s
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proposal is rejected and the game goes on to round 2 whichever case occurs.
Then, player i obtains the discount payoff jv".

The efficient coalition structure of IV is denoted by 7*(N) = {S7(N), ..., Sj~ }-
Because we focus on a SSPE those payoff configuration is feasible in the ef-
ficient coalition structure, we have

> ol <wu(Sp(N)), for t=1,..., K"

JES;(N)

Thus, the pair (S;(N), (v]7)jes; (), Where i € S;(N), satisfies constraints of
the problem (7). This implies that v < m.

Since V' ({i}) > 0 for alli € N, every player i surely obtain more than zero
as a payoff when i becomes the proposer. Therefore, xt > 0. The responder
also rejects the proposal in which his payoff is less than zero. Thus, x% > 0.
We have v)¥ > 0 because the above argument applies to all i+ € N. Hence,
dv)N < vl < m'. Player i obtains only dv)¥ even if he proposes a payoff
greater than m‘. This implies 2! < m?.

(z¢ > m'): By the assumption that the payoff configuration is feasible
in the efficient coalition structure, the pair (S7(N), (v)) es;(n)) is a feasible
solution of the problem (7). Then, the pair (S7(N), (0v})jes:(x)) is also a
feasible solution of the problem (7) because 0 < § < 1. Therefore, m’ >
v > dulN. Suppose that m’ = 0. Then, v)¥ = 0, and the payoff combination
(0, (6] ) jesz(vy\(iy) is feasible for S; D jes: (N\{i} vl < w(S;(N)). Two
cases are possible: (i) If v)¥ = 0 for all j € S;(N)\{i}, then there exists
a feasible payoff combination (y;, (6v});jes:(v\(i}) such that y; > 0 because
v(S;(N)) > 0. (i) If v} > 0 for some j € S;(N)\{i}, then dvY < v}.
Thus, some (y;, ((5U§V)j€5;(N)\{i}), where y; > 0, become feasible solution of
the problem (7). Because m' is the maximum value of (7), we must have
m' > 0. Any solution (S, y®) of (7) satisfies y; = m’ and yj = dv} for j € S,
j #i. For any ¢ > 0, define 2° such that

£
S| -1

S __ i s _ .8
Zp =m —¢g, zj =y;+

,JESJ# L.
If player i proposes (S, z%), then it is accepted by all j € S, j # i. Therefore,
xt > 27 = m' — £. Since ¢ is arbitrary, we conclude x¢ > m’.

Finally, we show that ¢’s proposal is accepted at round 1. It is sufficient

to prove dvY < m'. Suppose that jv)¥ = m’. It follows from dv)¥ < v < m!
that m’ = v)¥ = 0. This contradicts with m? > 0. O

We next present a necessary and sufficient condition for the existence of
a pure strategy SSPE of I'V(§). The corresponding theorem in the case of a
superadditive game is given in Okada (1996).
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Lemma 2. For ¢ = {(v°,0°) | S C N}, where v° = (v7)ics, 0° = (T} )ics
and the payoff configuration {vS | S C N} is feasible in the efficient coalition
structure, there exists a pure strategy SSPE o of TN (8) with ¢ if and only if,
for every S C N and for every i € S,

(i) the coalition T} constitutes a solution of

s (vm - y;t) ®)
Y jETj#i
subject to yj. > 5U§V, forallje S 7#14, andT € S;.

(ii) the expected payoff vector vo = (vF)ics satisfies

1 1 1
viS:E v(TP) — 6 Z Uf +E Z UZS+E5 Z vf\T”Sl,

JETS j#i k€T ki muigTS
(9)

where vl is defined to be zero when T = ().

Proof. (only if): Let o be a SSPE of T'V(§) with ¢ = {(v%,0%) | S C N}.
We can apply Lemma 1 to every subgame ['*(5). Then, (i) is proved. In
the subgame ['*(§), every player i makes a proposal of the payoff allocation
' = (%) ers such that

vi=o(Tf) = Y ovf, al =), jeTSj#i (10)

JETE j#i

Since this proposal is accepted at round 1, we can obtain (9) by the definition
of T9(6).

(if): Define the strategy combination o = (04, ..., 0,) of I’V (4) such that,
in every subgame I'*(4), every player i € S proposes a solution (77, z;) of

the problem (8) satisfying (10), and accepts any proposal (T, y?) if and only
if yI' > dv?. It is easy to see that o is a SSPE of 'V (4) with . O

Let us now turn to the proof of Theorem 2. By the definition of subgame
coalitional efficient SSPE, the payoff configuration of such a equilibrium is
feasible in the efficient coalition structure. Therefore, we can use Lemma 1
and 2 to prove Theorem 2.

Proof. (only if): Let denote the efficient coalition structure of S by 7*(S) =
{S7(S),...,55s(S)}. Assume that there exists a pure strategy and limit
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subgame coalitional efficient SSPE of T'V exists. It follows from (ii) of Lemma
2 that, for every coalition S C N and for every i € S;(S), £ =1,..., K",

o ] e sl Isis)=1,

kES;(S),k#i

1S5(S)| ¢ s\s5(9) |S5s(S)] . s\sz.5(5) R
+W(Svl ++Tévl , for alleSl(S),
1 ) |Sks(S)| -1
vy = Kl v(Sks(S5)) =0 v ¢+ KST&’ZS
keS? o (8) ki
* . S* S S\S* s
+ 7|Siéf)|5vf\sl(s) 4+ -+ 7| KS|;|( )|5vi Vs ), for all i € Sy-s(95).

The above equations system is uniquely solvable for any ¢ < 1, and the
solution (v?);cs is expressed in the following recursive form:
(i) For each element of 7*(.5),

sits) _ v(51(5))

v; = — , for all i € S7(9),
S5(S)] 1(5)
s:5(5)  v(Sks(9)) e
e S DR g all i € S (S),
55 (9)] s ()

(i) For each union of two elements of 7*(S5),

52 (S)US3(S) 1 . . S:(S) : .
vt M= . v(ST(S)) +|S5(9)|0v; , for all i € S7(9),
S U SE) LSO + 1S5S0 1)
53 (S)US3(S) 1 . . S3(S) . .
vt 2= — . v(S5(5)) +|S7(S)|dv;? , for all 1 € S5(.5),
FEUSE 0(S5(8)) + 181(5) 607 | 5(S)
St o (S)USZ4(S) 1 i St g (S)]
U-K 1 K — v * S + S* S 50-}( 1 ,
3 |S;(5_1(S)US;(S(S)| i ( stl( )) | KS( )| 3
for all i € Sys_,(5),
Sxg_ (S)USr 5(9) 1 I 5% 5(5)
v K51 K - v(S%ts(S)) + |SE S)|ov, ¥ ,
3 |S;(5_1(S)US;(S(S)| I ( KS( )) | stl( )| i ]

for all i € Sys(95).
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(iii) As a result, we have, for S = S}(S)U---U S5s(9),

1 . . S\S3(S * S\S s (9)
=15 [0(S1(5) + 185910 oS ()l ]
for all i € S7(9),
1 . « S\S;(S * S\Sies 1 (5)
o =g [v( s (9)) + [ST() 1507 1 vk Sy (9) v, ] ,

for all i € Sys(9).

It is easy to see that, for every S C N and for the efficient coalition structure

7T*(S) = {ST(S)v R }}5(5)},

{ Si(9)) :
vy - Ufl(s)zv(li, for all 7 € S7(9), 11
S s .
; ks(5)) :
vy - vaS(S) = w, for all i € S}s(S5),
|Ses (9] e

as 0 goes to 1. From (i) of Lemma 2, we have,
for every i € S¥(9),

o(SHS) =6 Y wizwe(@) -6 Y v (12)

keSH(S)k£i kET ki
forany T' C S with ¢ € T,

for every i € S}.5(5),

WSis(S) =6 3 iz -5 Y of

keSx ¢ (S)k#i keT k#i

forany T'C S with 7 € T.

Taking into account for (11), we have (4) of Theorem 2 as § goes to 1 in (12).

(if): Suppose that (4) holds. From (ii) of Lemma 2 the expected payoff
vector (v7);cg satisfies the equations system (9). By the equations system (9)
we can easily see that each dvy is monotone increasing with ¢ and converges

to v(S;(5))/15:(S)], i € S;(S), £ =1,...,K° as § goes to 1. Moreover, dv;
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is continuous in §. Therefore, for any ¢ sufficiently close to 1, we have the
following inequalities;

v(ST(S)) — 0o Z vy > max {U(T) -0 Z U,f} , for all i € S7(9),

TeS;
kESf(S),k#i keT k#i
(13)

v(Sks(S)) — 0 Z Ufzmax{v(T)—(S Z v,f}, for all 1 € S}s(S5).

) TeS; .
ket o (S) ki kET ki

Let define the strategy combination o* of I'V(§) such that, in every subgame
['(4), every player i € S;(S) proposes the coalition S;(S) and the payoff
vector y* such that y! = v(S;(5)) — Zkesz(s)yk# yi, and yi = ovj for j €
S7(S), and accepts any proposal (T, y") if and only if y/ > dv{. From the
above inequalities (13) and Lemma 2, o* becomes a SSPE of I'V(§). Thus, as
0 — 1, we have a pure strategy and limit subgame coalitional efficient SSPE
of IV with the expected payoff vector (5). O
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