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Abstract

We prove the existence of a stationary subgame perfect equilibrium
(SSPE) in a noncooperative coalitional bargaining game model with
random proposers. Our model contains the bargaining situation in
which the coalitional form game is not superadditive. We also provide
a necessary and sufficient condition to exist a pure-strategy SSPE
satisfying the efficiency property as a discount factor is close to one.

JEL Classification Numbers: C72, C78.

1 Introduction

This paper presents an existence proof of a stationary subgame perfect equi-
librium (SSPE) in an n-person noncooperative coalitional bargaining game
with random proposers. A noncooperative coalitional bargaining model with
random proposers has been provided by Okada (1996). He considered a
bargaining situation described by an n-person coalitional game (N, v) with
transferable utility, where the characteristic function v of the game is su-
peradditive. We extend the situation to that not necessarily described by
a superadditive game (N,v). The non-superadditive game (V,v) includes
a local public goods economy with congestion effects, which will be taken
for example later. Mutuswami, Perez-Castrillo and Wettstein (2004) have
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also shown that the game associating to a local public goods economy is not
necessarily superadditive.

A noncooperative coalitional bargaining model is represented as an infinite-
length extensive game with perfect information. It is well-known that an
infinite-length extensive form game does not have a Nash equilibrium at
all. Therefore, we have to prove the existence of an SSPE in a noncoopera-
tive coalitional bargaining model with random proposers. In Okada (1996)’s
paper, the existence proof itself was not given in a general setting, but a nec-
essary and sufficient condition for a pure strategy SSPE with the efficiency
property is provided. We also clarify a necessary and sufficient condition for
a pure-strategy efficient SSPE to exist in the random-proposers bargaining
model for a coalitional game which contains the non-superadditive case. The
necessary and sufficient condition is related to the notion of a C-stable solu-
tion or a Core of coalition structure, which is introduced by Guesnerie and
Oddou (1979, 1981) and Greenberg and Weber (1986).

The paper is organized as follows. In Section 2, we present a noncoop-
erative coalitional bargaining game model with random proposers, and give
an example of the non-superadditive coalitional form game. In Section 3, we
provide two existence theorems for a stationary subgame perfect equilibrium
point of the bargaining game. Proofs of theorems in Section 3 are gathered
in Section 4.

2 Random-proposers Model

The bargaining situation is described by an n-person coalitional form game
(N,v) with transferable utility. Here, N = {1,...,n} is the set of players
and v : 2¥ — R is the characteristic funtion. The characteristic function
v is assumed to be 0-normalized (v({i}) = 0 for all i € N) and essential
(v(N) > 0). We allow the characteristic function to be non-superadditive;
for some S, T C N such that SNT =0, v(SUT) < v(S)+v(T). Tt is called
a coalition structure {N} to be universally efficient if for every partition
{S1,...,Sk} of N, v(N) > S0 w(Sy). If the game is superadditive, the
grand coalition NN is universally efficient. But the grand coalition N is not
necessary universally efficient in our situation.

Example. Let consider a two-goods economy consisting of one local
public good and one private good. We assume that the production technology
permits the transformation of one unit of private good into one unit of public
good. Each individual 2 € N is endowed with a same amount [ of private



good and has a quasi-linear utility function with congestion effects:
ui(g) = c(|S1) + =i,

where u;(g) is utility from the local public good ¢ and x; is the consumption
of private good. The term ¢(|S|) is disutility from congestion, where |S|
denoted the cardinality of the coalition S. The coalitional form game (N, v)
associating to the local public good economy is defined naturally such as a
market game by; for each S C NV,

rgrilng{Zuz —|S|e |S|)+|5|[—g}.

€S

The value v(S) denotes the maximum total payoff of the members of coalition
S by producing the local public good. Since each individual has a quasi-
linear utility function, the game (N, v) is a game in coalitional form with
transferable utility.

Let us give an example to show the local public good game (N, v) to be
non-superadditive. N = {1,2,3,4}. I = 5. Each utility function of the
public good is given by: u1(g) = us(g) = 4logg and uz(g) = us(g) = 2logg.
Congestion costs are represented by: ¢(1) = 1, ¢(2) = 3, ¢(3) = 10, and
c(4) = 15. Then, the value of characteristic function for each coalition is:

v({1}) = v({2}) = 8log2 = 5.5548 - - - ,
({3}) = v({4}) =2log2 + 2 = 3.33862- - -,

v({1,2}) = 24log2 — 1 =15.6344 - - - ,

v({3,4}) = 8log2+3 =8.5448- - -,
(
(

<

{1,2,3}) = v({1,2,4}) = 10log 10 — 5 = 18.025 - - - ,
v({1,3,4}) = v({2,3,4}) = 24log2 — 3 = 13.6344 - - - ,
v({1,2,3,4}) = 12log12 — 7 = 22.8176 - - -

v

Therefore, we can get

v({1,2}) +v({3,4}) > v({1,2,3,4}).

Thus, v is not superadditive, and the grand coalition N is not universally
efficient in this example.

Next, let explain the random-proposer model of bargaining. A payoff
vector for a coalition S is denoted by y° = (y)ics € RI°I. A payoff vector

y? for S is called feasible if
> yf <o(9)

1€S



We denote by Y the set of all feasible payoff vectors for S.

Our noncooperative bargaining model proceeds as follows. At every round
t=1,2,...,one player is selected as a proposer with equal probability among
all player still active in bargaining. Let N' be the set of all active players
at round t, where the bargaining starts with all players at round 1, i.e.,
N' = N. The proposer i chooses a coalition S with i € S C N! and a
payoff vector y° € Y°. All other players in S accept or reject the proposal
sequentially. If all the other players in the coalition accept the proposal, then
it is agreed upon and enforced. The remaining players outside S can continue
negotiations at the next round. Thus, N'™!' = N\ S. If some players in S
reject the proposal, then negotiations go on to the next round and a new
proposer randomly selected by the same rule. In this case, N**! = N*. The
bargaining continues until there exists a subset S of active players such that
v(S) > 0.

When a proposal (S,y°) is agreed upon at round ¢, the payoff of every
member i € S is 6'~1y7, where § is a discount factor, and 0 < § < 1. For
players who do not belong to any coalitions, their payoffs are assumed to be
zero. Every player has perfect information.

Our model is formally represented as an infinite-length extensive form
game with perfect information and with chance moves. We denote by ' (9)
the bargaining model with the player set S C N. I'® is used when the
discount factors 0 converge to one. Let o; be a strategy for player i in
I'N(8) and 0 = (04, ...,0,) be a strategy combination. The solution concept
that we shall apply to our bargaining model is a stationary subgame perfect
equilibrium point (SSPE).

Definition 1. (i) A strategy combination o* of the game I'V(§) is called a
stationary subgame perfect equilibrium point (SSPE) if it is a subgame perfect
equilibrium point with the property that for every t = 1,2, ..., the ¢th round
strategy of every player depends only on the set N! of all players active at
round ¢ ant the proposal at round ¢. (ii) A strategy combination o* of the
game ['V is called a limit SSPE if it is a limit point of SSPEs of I'V () as
§— 1%

For an SSPE o of I'V(§) and every coalition S C N, let v = (v7);cs
denotes the expected payoff vector of players for o in the subgame I'°(4),
and 0° = (T?);cs be the collection of coalitions T} proposed by every player

!Precisely speaking, a limit SSPE is defined by the limit point of the equilibrium
payoff configuration (v°(d))scn of TNV(8) as § — 1. Thus, v°(8) — v® as § — 1, where
v9(6) € R®. We can easily construct a SSPE strategy combination which supports the
limit point (v°)scn of the payoff configuration.
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i on the plays of o in ['*(§). We call the collection {(v°,0%) | S C N} the
configuration of the SSPE o.

3 Existence Theorems

Let us establish the existence theorem for an SSPE in the general random-
proposer bargaining model. If mixed strategies about the proposal of a coali-
tion are allowed, the existence of an SSPE is guaranteed. All proofs of
theorems are gathered in Section 4.

Theorem 1. If mized strategies about the choice of a coalition by each pro-
poser are allowed, there exists a stationary subgame perfect equilibrium point

of the game I'VN(6).
Denote the set of all partitions of .S by

K
H(S): {{Sl,,SK}‘ USk:S, andSiﬂSj:(/),iséj}.
k=1

A element 75 € TI(S) is called a coalition structure of S. For each coalition
structure ™ = {S;,..., Sk} of S, the function on I1(S) is defined by

V(r%;8) =Y v(Sk).

Definition 2. A coalition structure 7 is called an efficient coalition structure

of S'if V(m; S) > V(x'; S) for all «" € II(S5).
Let define the efficiency of a SSPE for I'V.

Definition 3. An SSPE o of the game I'V(§) is called subgame coalitional
efficient if, for every subgame I'*(4), every player i € S proposes the coalition
which is a component of the efficient coalition structure of S in . A limit
subgame coalitional efficient SSPE of T'V is defined to be a limit point of
subgame coalitional efficient SSPEs of 'V () as § — 1.

The notion of subgame coalitional efficiency requires that in all subgames
['%(8) the efficient coalition structure is formed. This notion is stronger than
the Pareto efficiency of the expected payoff vector for n players in T'V(4).

The next theorem (Theorem 2) characterizes the situation in which there
exists a pure strategy and limit subgame coalitional efficient SSPE in I'V.
Note that the existence of a pure-strategy SSPE is investigated. In Theo-
rem 2, the efficient coalition structure of each S is expressed by 7*(S) =

{S1(5),- -, Sjs(S)}.



Theorem 2. There exists a pure strateqy and limit subgame coalitional effi-
cient SSPE of TN if and only if the game (N,v) satisfies; for all S C N,

w max | v — | sub.to ,:W
|ST(S)| 2TCN,ieT( (T) je%;‘;éz‘y]> b.¢ Yj |5,’:(S)|’ (1)

JESHS)NT, k=1,2,...,K°, forallic S;(S),

U(Sges(5) > max (v(T) - Z yj> sub.to y; = o(5i(5))

|Sks(S)| — TeNaer Pl 1S:(S)]
JESHS)YNT, k=1,2,...,K°, forallic Sis(9).

The expected equilibrium payoff vector (’lj;)jes in T is given by

S G 1) VP P S G I )

S Sy TS @)

Theorem 2 shows that a pure strategy and limit subgame coalitional
efficient SSPE exists if and only if each individual obtains the maximum
payoff by forming coalition S} (S) under the condition that other individual j
must be guaranteed to get his payoff v(S;(5))/]S;(S)|, where S;(S) € 7*(S)
and j € S;(S), if j is the member of coalition.

We introduce the notion of a C-stable solution, which is considered in
Guesnerie and Oddou (1979, 1981) and Greenberg and Weber (1986).

Definition 4. A C-stable solution of (S, v) is a payoff vector y € RIS/, which
satisfies the following properties:

there exists a coalition structure 7 = {Sy,...,Sk} € II(S) such
that Zjesk y; <wv(Sk) forall k =1,2,..., K and that y does not
blocked by a coalition 7'; there is no 7" C S such that ZjeT y; <
v(T) and y; > y; for all j € T.

The notion of a C-stable solution is an extension of the core concept.
If a coalition structure 7 is assumed to be {/N}, then the C-stable solution
implies the Core.

There is a relationship between Theorem 2 and a C-stable solution. Fix
a coalition S. The efficient coalition structure of S is given by 7*(S) =
{S5(9),...,S5s(S)}. For each S;(S), ¢ = 1,...,K", the sum of money
v(S;(S)) distributes among the members of the coalition S;(S) equally.
Thus, player j € S;(S) receives the payoff of v(S;(S))/]S;(S)|. The above
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payoff allocation for the member of coalition S;(.S) is coincident with a Nash
bargaining solution of the bargaining problem (S} (5), v(S;(S))). The Nash
bargaining solution of the problem (S;(S),v(S;(S)) is defined as the solution
of the maximization problem:

max H y; subject to Z y; < v(S;(9)).

(vi)s S*(S) . .
€51 jesy(s) jes;(S)

We have to note that the condition (1) in Theorem 2 says that, for every
coalition S of N, the above payoff allocation is in the C-stable solution of

(S, v).

4 Proofs

4.1 Proof of Theorem 1

This existence theorem is proved in the same line as the proof of Theorem
2.1 in Ray and Vohra (1999).

The proof is given by induction on the number of players. The theorem
holds trivially for the 1-player case. We assume that it holds for the less
than n-players case. This hypothesis implies that there exists an SSPE for
every subgame I'V\%(§) for every nonempty coalition S. We fix one equi-
librium strategy combination for each subgame. Let vN\% = (U;V\S)ieN\S be
the expected payoff vector in I'V\¥(§). What we have to do is to describe
equilibrium strategies for all the remaining nodes in the game T'V(4).

Let us introduce several notations. Let S; = {S C N | i € S} be
the set of all nonempty coalitions containing player i, and let A; be the
set of probability distributions over the choice set A; = (S;, ({7})jen\qi})-
We define A = J],.y A;. The choice set A; indicates that player ¢ make an
acceptable proposals to a coalition in S; or an unacceptable proposal to player
j. Now «; denote player 7’s choice of coalitions to form or other players to
whom an unacceptable offer is made. «;(S) represents the probability with
which 7 chooses to make an acceptable proposal to S, and «;({j}) is the
probability with which 7 choose to make an unacceptable proposal to player
j. We assumed that v({i}) > 0 for all i € N and a payoff to every player
is bounded above by m = maxgcy v(S). Therefore, we restrict the feasible
payoff vectors to X = [0, m]" in searching for equilibrium payoffs.

Fix a vector a € A and a vector 2* = (z},...,2%) € X. Define v} =
> ken ¥ /n for every i. Because the set X is convex, the convex combination
vV = (v])ien is in X. As we see below, the vector z* is interpreted as the
vector of expected equilibrium payoffs that each player receives if player i

)
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becomes the proposer at round 1, and, by the definition of 'V (4), the vector
N becomes the expected equilibrium payoff vector.
First, i can propose a coalition S € S; and a payoff vector y'(S) if he
becomes the proposer at round 1. Consider the following problem:

max y; subject to y]Z&JJ ,j €S,7 #1, and, Zngv S).  (3)
JES

Let g;(S,v") be the maximum value which is attained in the above problem.
It satisfies

g:(S,v™) Z v

JES,j#i

It is easy to see that g;(S,v") is a continuous function of v¥.

Second, i might make an unacceptable proposal to j. (In this case, i
obtains the expected payoff dv}¥. )

Let compute a present value payoff to player i under a given (vV,a) €
X x A. We first define a function on X x A by

A0 =Bl +s Y a3 ), (@)

CEN 4] keN

for all j € N, where

BZZ = Z &i(S)gi(S,UN), a‘nda

SES;
[SGSj,iES J Ses; ids
The equations System (4) can be written in matrix form as EVI = BT
Where‘/;_[z( ) 12(U 7a)“‘70?(7}]\7705)]7Bi:[BilaBz?a"'aBin]aand
ar ({4 ar ({2 ar ({0
52#1 {‘;}} 52#1 i{}l}) _626 ' Eili;
E = 624752 azn 524752 a2n —5Z£#2 azn
. an ({€ . an({t ' : an({e
0y, e sy, el gy, el

Note that E is the nonsingular and dominant diagonal matrix. Therefore,

v! (v, @) is continuous in vV and « for all j € N.

)



Next define a function on X x A x A; by

G0, 0,d) = 3 @(S)g(S, o) + 0y @) Y vi(vha)

. n
Ses; 040 kEN

and let denote

2

w?('UNa Oé) - gi('UNa a, %‘(UN, Oé))

By Berge’s maximum theorem, the correspondence ] (v, ) is upper hemi-
continumous and convex-valued ant the function ¥2 (v, @) is continuous. It
follows from v({i}) > 0 for all i that ?(v",a) € [0,m] for all i. In addition,
the set X x A is compact and convex. Therefore, the correspondence

w'l(,UNa Oé) = arg glean gi('UNa Q, &z)a

n n
=[] < []vl: X xA—= X xA
i=1 i=1
is upper hemicontinuous, nonempty and convex-valued on the compact and
convex domain. By Kakutani’s fixed point theorem, we have a fixed point
(v™*, a*) such that (vV*, a*) € Y (v™N*, a*).

Using the fixed point (vV*, a*), we can construct an SSPE of the game
'V (§). Define the strategy combination o = (04, ..., 0,) such that: (a) When
the set of active players is N, player ¢ proposes coalitions according to o
and a payoff vector y(.S) which solves the problem defined by (4.1) to every
coalition S € §; such that o (S) > 0. To every j such that of({j}) > 0,
she offers less than 5U]]-V*. (b) When the set of active players is N, player i
as a responder accepts the proposal y;(S) if and only if y;(S) > dvN*. (c)
When the set of active players is not N, the strategies of the active players
are defined by a pre-selected equilibrium of the game I'V\9(4).

We can check that the strategy combination o satisfying (a), (b) and (c) is
an SSPE of T'V(§). By construction, it is satisfied that v)\* = &(vV*, a*, af) =
max & (vV*, a*,-) . This implies that player i as a proposer could not receive
a higher payoff than v¥ by deviating from «. The action prescribed in (a)
achieves vN*. Thus, it is the optimal strategy as a proposer for player i.
Because 4’s continuation payoff is Jv)*, the strategy in (b) as a responder is
trivially optimal. Finally, if some players left the game, the actions in (c) are
optimal strategies by induction hypothesis. Thus, o is a SSPE of 'V (§).

4.2 Proof of Theorem 2

We provide two lemmas before giving the proof of Theorem 2. In addition,
we focus on a class of payoff configuration in these lemmas.



Definition 5. A payoff configuration {v° | S C N} is called feasible in the
efficient coalition structure 7 (S) = {S7(S),..., S} if, for every S,

> vl <u(Si(9), =1,..., K.

JESF(S)

The first lemma shows that, in every pure strategy SSPE those payoff
configuration is feasible in the efficient coalition structure, an agreement is
made in the first round. We have to restrict a class of SSPE to prove no
delay of agreement in equilibrium. If a game is superadditive, this restriction
is unnecessary; no delay occurs in equilibrium, see Okada (1996).

Lemma 1. In every pure strategqy SSPE o of TN (8) with {(v°,0%) | S C
N} such that the payoff configuration is feasible in the efficient coalition
structure, every player i € N proposes at round 1 a solution (S;,y>) of the
mazimization problem:

tax (v(S> > y) )
JES,jFi
subject to y;- > 5U§V, forall j € S,7 # 1,
Ses,;.

Moreover, the proposal (S;,y°) is accepted in o.

Proof. Let z* = (2%,...,2") be the expected equilibrium payoff vector when

player i becomes the proposer at round 1. By definition of I'V(4), v =

(3

> wen ©F/n for all i € N. We denote by m’ the maximum value of (5).

We will prove that z; = m'.

(¢ < m): Suppose that player i proposes (S,y°) at round 1 such that
y? > m'. Since m' is the maximum value of (5), for some j € S with j # i,
y; < 0v). Let j* be the last responder of such a kind. In equilibrium
the following is possible: (i) some responder after j* reject i’s proposal, and
(i) otherwise. If player j accepts the proposal in the case of (ii), then the
proposal is agreed upon and player j obtain yjs* less than his continuation
payoff 5U§V. Therefore, it is optimal for j* to reject i’s proposal. Thus, i’s
proposal is rejected and the game goes on to round 2 whichever case occurs.
Then, player i obtains the discount payoff jv".

The efficient coalition structure of N is denoted by 7*(N) = {S}(N),..., Sk}
Because we focus on a SSPE those payoff configuration is feasible in the ef-
ficient coalition structure, we have

Z v <w(S;(N)), for £=1,..., K"

JESF(N)
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Thus, the pair (S;(N), (v})jesz(x)), Where i € S; (), satisfies constraints of
the problem (5). This implies that v¥ < m’.

Since V ({i}) > 0 for all i € N, every player ¢ surely obtain more than zero
as a payoff when i becomes the proposer. Therefore, 2! > 0. The responder
also rejects the proposal in which his payoff is less than zero. Thus, x% > 0.
We have v > 0 because the above argument applies to all i € N. Hence,
dv)N < v < m'. Player i obtains only dv)¥ even if he proposes a payoff
greater than m‘. This implies ! < m'.

(x¢ > m'): By the assumption that the payoff configuration is feasible
in the efficient coalition structure, the pair (S;(N), (v)¥);es:(v)) is a feasible
solution of the problem (5). Then, the pair (S7(N), (0v})jes:(x)) is also a
feasible solution of the problem (5) because 0 < § < 1. Therefore, m’ >
v > v, Suppose that m* = 0. Then, v} = 0, and the payoff combination
(0, (6v))jes: (vyiy) 1s feasible for S; D jes:(N\(i) vl < w(S;(N)). Two
cases are possible: (i) If v} = 0 for all j € S;(N)\{i}, then there exists
a feasible payoff combination (y;, (5?)]]-\[)3'65;(1\/)\{1'}) such that y; > 0 because
v(S;(N)) > 0. (ii) If v} > 0 for some j € S;(N)\{i}, then dvY < v}.
Thus, some (y;, (0v) ) jes:(v)\(i})> Where y; > 0, become feasible solution of
the problem (5). Because m' is the maximum value of (5), we must have
m' > 0. Any solution (S,y°) of (5) satisfies y = m’ and y; = dv for j € S,
j # 4. For any ¢ > 0, define 2° such that

_c
S| -1

2 =m' — ¢, zf:yf—i—

7 7j E S)] ;é Z
If player i proposes (S, 2°), then it is accepted by all j € S, j # i. Therefore,
zt > z7 = m' — . Since ¢ is arbitrary, we conclude z¢ > m’.

Finally, we show that ¢’s proposal is accepted at round 1. It is sufficient
to prove dv)¥ < m'. Suppose that dv)¥ = m?. Tt follows from dv)¥ < vl¥ < m!
that m* = v)¥ = 0. This contradicts with m? > 0. O

We next present a necessary and sufficient condition for the existence of
a pure strategy SSPE of I'V(§). The corresponding theorem in the case of a
superadditive game is given in Okada (1996).
Lemma 2. For ¢ = {(v°,0°) | S C N}, where v° = (v7)ics, 0° = (T )ics
and the payoff configuration {vS | S C N} is feasible in the efficient coalition
structure, there exists a pure strateqgy SSPE o of TN (8) with ¢ if and only if,
for every S C N and for every i € S,

11



(i) the coalition T constitutes a solution of

s (vm - y;:> ©)
Y JET j#i
subject to y;- > 5U§V, foralljeS,j#1i, andT € S;.

(ii) the expected payoff vector vo = (vF)ics satisfies

1 1 1
Ufzm o(TF) -6 Z Uf +E Z UerE(S Z Uf\T’%,

JETS j#i k€T k#i mugTs
(7)

where vl is defined to be zero when T = ().

Proof. (only if): Let o be a SSPE of I'V(§) with ¢ = {(v%,0%) | S C N}.
We can apply Lemma 1 to every subgame ['*(5). Then, (i) is proved. In
the subgame I'*(§), every player i makes a proposal of the payoff allocation
a' = (%) ers such that

ri=o(T0) — Y 6, of =6, jeTf,j#i (8)

JETS j#i

Since this proposal is accepted at round 1, we can obtain (7) by the definition
of I°().

(if): Define the strategy combination o = (04, ..., 0,) of 'V (4) such that,
in every subgame I'(§), every player i € S proposes a solution (7}°, ;) of
the problem (6) satisfying (8), and accepts any proposal (T, y?) if and only
if yI' > dv?. Tt is easy to see that o is a SSPE of 'V (4) with . O

Let us now turn to the proof of Theorem 2. By the definition of subgame
coalitional efficient SSPE, the payoff configuration of the equilibrium is fea-
sible in the efficient coalition structure. Therefore, we can use Lemma 1 and
2 to prove Theorem 2.

Proof. (only if): Let denote the efficient coalition structure of S by 7*(S) =
{S1(S),...,S5s(S)}. Assume that there exists a pure strategy and limit
subgame coalitional efficient SSPE of T'V. Tt follows from (ii) of Lemma 2
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that, for every coalition S C N and for every i € S;(S), £ =1,..., K,

s_ 1] e sl Isisl-1,

keS;(S)k#i
|S5cs(S)] 5,5\ ks (S)

1S5(S)] « s\s3(s)
dv; 2 ;
S|

9] ; , for all i € S7(9),

_|_

ST P Sl Ise®-1

kES* o (S) ki

S*(S . S S)| . s\stg (S
+ u(svf\%(s) oot M(svi Wi g all i € S7.4(9).
5] |5
The above equations system is uniquely solvable for any § < 1, and the
solution (v?);cs is expressed in the following recursive form:
(i) For each element of 7*(.5),

sits) _ v(51(5))

v; = — , for all i € S7(9),
S1(S)] 1(5)
s:5(5)  v(Sks(9)) e
s 2 DS o all i € Sis(S),
55 (9)] wes ()

(ii) For each union of two elements of 7*(S5),

52 (S)US3(S) 1 . . S:(S) : .
vt 2= — . v(ST(S)) +|S5(5)|6v; 7|, for all i € ST(S),
S U SE) LSO + 1S5S0 1)
52 (S)US5(S) 1 . . S3(S) : .
vt 2= — . v(S5(S)) +|S7(S)|6v;> 7|, for all i € S5(S),
S U SE) LSO + IS8 5(S)
S* ¢ (S)USE (S) 1 i S* s (S)]
UiK 1 K _ v(S%s (S)) + |S*s(S 5UiK 1 :
|S;(5_1(S)US;(5(S)| i ( KS 1( )) | KS( )|
for all i € Sys_1(95),
8% ¢ (S)US* 4(S) 1 I Ss(5)
p, K- RS v(Sks(S)) + |Sks 1 (S)|6v; © :
i |S;(5_1(S)US;(5(S)| I ( KS( )) | KS—I( )| i ]

for all i € S7-s(95),
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(iii) As a result, we have, for S = S}(S)U---U Sks(9),

1 . . S\S3(S * S\S s (9)
=15 [0(S1(5) + 185910 oS ()l ]
for all i € S7(9),
1 . « S\S;(S * S\Sies 1 (5)
o =g [v( s (9)) + [ST() 1507 1 vk Sy (9) v, ] ,

for all i € Sys(9).

It is easy to see that, for every S C N and for the efficient coalition structure

7T*(S) = {ST(S)v R }}5(5)},

: S51(5)) :
Ufévfl(s)zv(li, for all 7 € S7(9), 9
S ) o
: ks (S)) :
vy - vaS(S) = w, for all i € S}s(95),
|S5es ()] K

as 0 goes to 1. From (i) of Lemma 2, we have,
for every i € S¥(9),

(S =0 Y wzum - Y o (10)
kES;(S) ki kET ki
forany T'C S with ¢ € T,

for every i € S}.5(5),
WSS =0 Y im0 Y o
kES? o (S)kti kET ki

forany T'C S with 7 € T.

Taking into account for (9), we have (1) of Theorem 2 as ¢ goes to 1 in (10).

(if): Suppose that (1) holds. From (ii) of Lemma 2 the expected payoff
vector (v7);cs satisfies the equations system (7). By the equations system (7)
we can easily see that each dvy is monotone increasing with ¢ and converges

to v(S;(5))/15:(S)], i € S;(S), £ =1,...,K° as § goes to 1. Moreover, dv;
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is continuous in §. Therefore, for any ¢ sufficiently close to 1, we have the
following inequalities;

v(Si(S) =6 D> wp >max{v )=0 > vk}, for all i € S¥(S),

TES,
keS:(S) ki kET k#i
(11)

v(Sks(S)) — 6 Z U, erpax{v )= Z Uk}a for all 7 € Sis(S5).

kES? o (S) ki kET ki

Let define the strategy combination o* of I'V(§) such that, in every subgame
['%(8), every player i € S;(S) proposes the coalition S*(S) and the payoff
vector y* such that y¢ = v(S;(5)) — D kes; (8) i yi. and y} = dvj for j €
S;(S), and accepts any proposal (T,yT) if and only if y!" > dv?. From the
above inequalities (11) and Lemma 2, 0* becomes a SSPE of I'V(§). Thus, as
0 — 1, we have a pure strategy and limit subgame coalitional efficient SSPE
of TV with the expected payoff vector (2). O
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